首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first chiral phosphoric acid (CPA) catalyzed cycloaddition–elimination cascade reaction of 2-naphthol- and phenol-derived enecarbamates with azonaphthalenes has been established, providing a highly atroposelective route to an array of axially chiral aryl-C3-benzoindoles in excellent yields with excellent enantioselectivities. The success of this strategy derives from the stepwise process involving CPA-catalyzed asymmetric formal [3 + 2] cycloaddition and subsequent central-to-axial chirality conversion by elimination of a carbamate. In addition, the practicality of this reaction had been verified by varieties of transformations towards functionalized atropisomers.

An organocatalytic asymmetric cycloaddition–elimination cascade reaction of aryl enecarbamates with azonaphthalenes has been developed to access axially chiral heterobiaryls in excellent yields and enantioselectivities.  相似文献   

2.
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds.

2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.  相似文献   

3.
We have developed a simple protocol for the preparation of 1,2-fluorohydrin by asymmetric hydrogenation of fluorinated allylic alcohols using an efficient azabicyclo thiazole-phosphine iridium complex. The iridium-catalyzed asymmetric synthesis of chiral 1,2-fluorohydrin molecules was carried out at ambient temperature with operational simplicity, and scalability. This method was compatible with various aromatic, aliphatic, and heterocyclic fluorinated compounds as well as a variety of polyfluorinated compounds, providing the corresponding products in excellent yields and enantioselectivities.

We have developed a simple protocol for the preparation of 1,2-fluorohydrin by asymmetric hydrogenation of fluorinated allylic alcohols using an efficient azabicyclo thiazole-phosphine iridium complex.  相似文献   

4.
An asymmetric reductive cross-coupling of α-chloroesters and (hetero)aryl iodides is reported. This nickel-catalyzed reaction proceeds with a chiral BiOX ligand under mild conditions, affording α-arylesters in good yields and enantioselectivities. The reaction is tolerant of a variety of functional groups, and the resulting products can be converted to pharmaceutically-relevant chiral building blocks. A multivariate linear regression model was developed to quantitatively relate the influence of the α-chloroester substrate and ligand on enantioselectivity.

A Ni-catalyzed enantioselective reductive cross-coupling of α-chloroesters and (hetero)aryl iodides is reported. A MLR model was developed to quantitatively relate the influence of the α-chloroester substrate and ligand on enantioselectivity.  相似文献   

5.
The introduction of chirality into peptoids is an important strategy to determine a discrete and robust secondary structure. However, the lack of an efficient strategy for the synthesis of structurally diverse chiral peptoids has hampered the studies. Herein, we report the efficient synthesis of a wide variety of N-aryl peptoid atropisomers in good yields with excellent enantioselectivities (up to 99% yield and 99% ee) by palladium-catalyzed asymmetric C–H alkynylation. The inexpensive and commercially available l-pyroglutamic acid was used as an efficient chiral ligand. The exceptional compatibility of the C–H alkynylation with various peptoid oligomers renders this procedure valuable for peptoid modifications. Computational studies suggested that the amino acid ligand distortion controls the enantioselectivity in the Pd/l-pGlu-catalyzed C–H bond activation step.

The introduction of chirality into peptoids is an important strategy to determine a discrete and robust secondary structure.  相似文献   

6.
A copper-catalyzed asymmetric intramolecular reductive cyclization for the synthesis of dibenzo[b,d]azepines is described. Use of 2′-vinyl-biaryl-2-imines as substrates and in situ formed [CuI/(Ph-BPE)] as the catalyst enables the synthesis of 7-membered bridged biarylamines containing both central and axial stereogenic elements in high yields (up to 98%) and with excellent diastereo- and enantioselectivities (>20 : 1 d.r., up to 99% ee). Moreover, the same catalyst was found to facilitate a related borylative cyclization to afford versatile boronic ester derivatives. Both reactions proceed under mild conditions (rt) and are applicable to a variety of substituted aromatic and heterocyclic derivatives.

Dibenzo[b,d]azepines featuring axially chiral 7-member-bridged biaryls have been prepared by asymmetric reductive or borylative cyclizations using copper catalysis.  相似文献   

7.
The Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of prochiral enamide anions derived from 5H-oxathiazole 2,2-dioxides has been developed. Various 4,5-disubstituted and 4-substituted cyclic sulfamidate imines have participated in the transformation with a range of allyl carbonates—as well as 2-vinyl oxirane, 2-vinyl-N-tosylaziridine, and 2-vinyl-1,1-cyclopropane dicarboxylate—to furnish the desired C-allylated products in moderate to high yields, with high regioselectivites and generally high enantioselectivities. Conversion between N- and C-allyl products was observed, with the N-allylated products converting to the C-allylated products over time. The resulting high-value allylated heterocyclic products all bear a tetrasubstituted stereogenic centre and can be reduced to an allylated chiral sulfamidate or an amino alcohol.

The Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of prochiral enamide anions derived from 5H-oxathiazole 2,2-dioxides has been developed.  相似文献   

8.
We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate. The Brønsted acid-catalyzed kinetic resolution–allylboration reaction sequence of the racemic reagent gave (Z)-δ-hydroxymethyl-anti-homoallylic alcohols with high Z-selectivities and enantioselectivities upon oxidative workup. In parallel, enantioconvergent pathways were utilized to synthesize chiral nonracemic 1,5-diols and α,β-unsaturated aldehydes with excellent optical purity.

We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate.  相似文献   

9.
An efficient palladium-catalyzed AAA reaction with a simple α-sulfonyl carbon anion as nucleophiles is presented for the first time. Allyl fluorides are used as superior precursors for the generation of π-allyl complexes that upon ionization liberate fluoride anions for activation of silylated nucleophiles. With the unique bidentate diamidophosphite ligand ligated palladium as catalyst, the in situ generated α-sulfonyl carbon anion was quickly captured by the allylic intermediates, affording a series of chiral homo-allylic sulfones with high efficiency and selectivity. This work provides a mild in situ desilylation strategy to reveal nucleophilic carbon centers that could be used to overcome the pKa limitation of “hard” nucleophiles in enantioselective transformations.

A variety of “hard” α-sulfonyl carbanions of aryl, heteroaryl and alkyl sulfones were successfully employed as nucleophiles in palladium-catalyzed asymmetric allylic alkylation with excellent enantioselectivities.  相似文献   

10.
A novel enantioselective copper‐catalyzed arylation of benzylic C?H bonds, using alkylarenes as a limiting reagent, has been developed. A chiral bisoxazoline ligand bearing an acetate ester moiety plays a key role in both the reactivity and enantioselectivity of the reaction. The reaction provides efficient access to various chiral 1,1‐diarylalkanes in good yields with good to excellent enantioselectivities, and displays excellent functional‐group tolerance.  相似文献   

11.
A copper-catalysed regio- and stereoselective hydroamination of acrylates with hydrosilanes and hydroxylamines has been developed to afford the corresponding α-amino acids in good yields. The key to regioselectivity control is the use of hydroxylamine as an umpolung, electrophilic amination reagent. Additionally, a judicious choice of conditions involving the CsOPiv base and DTBM-dppbz ligand of remote steric hindrance enables the otherwise challenging C–N bond formation at the α position to the carbonyl. The point chirality at the β-position is successfully controlled by the Xyl-BINAP or DTBM-SEGPHOS chiral ligand with similarly remote steric bulkiness. The combination with the chiral auxiliary, (−)-8-phenylmenthol, also induces stereoselectivity at the α-position to form the optically active unnatural α-amino acids with two adjacent stereocentres.

A copper-catalysed regio- and enantioselective hydroamination of acrylates has been developed to afford the corresponding optically active unnatural α-amino acids.  相似文献   

12.
A phosphite mediated stereoretentive C–H alkylation of N-alkylpyridinium salts derived from chiral primary amines was achieved. The reaction proceeds through the activation of the N-alkylpyridinium salt substrate with a nucleophilic phosphite catalyst, followed by a base mediated [1,2] aza-Wittig rearrangement and subsequent catalyst dissociation for an overall N to C-2 alkyl migration. The scope and degree of stereoretention were studied, and both experimental and theoretical investigations were performed to support an unprecedented aza-Wittig rearrangement–rearomatization sequence. A catalytic enantioselective version starting with racemic starting material and chiral phosphite catalyst was also established following our understanding of the stereoretentive process. This method provides efficient access to tertiary and quaternary stereogenic centers in pyridine systems, which are prevalent in drugs, bioactive natural products, chiral ligands, and catalysts.

N-Alkylpyridinium salt of chiral amines undergoes phosphite mediated stereoretentive migrations to generate chiral alkylpyridines. The role of phosphite on reactivity and stereoselectivity were examined to achieve a catalytic asymmetric version.  相似文献   

13.
In this investigation, chiral thiophosphoramide 3d was easily prepared from chiral (1R,2R)-1,2-diphenylethylenediamine and then applied as an efficient chiral ligand in the catalytic asymmetric arylation reactions of various aromatic aldehydes. The corresponding diarylmethanol products were produced with good to excellent yields (up to 98%) and enantioselectivities (up to 94%). The recovery of chiral ligand 3d could be as high as 96%.  相似文献   

14.
Enantioselective chlorination of b-keto esters and amides catalyzed by squaramide-linked bisoxazoline ligand–Cu(OAc)2complexes was investigated. The corresponding chlorinated products were obtained in excellent yields with moderate enantioselectivities. The effect of solvent, temperature, Lewis acid, and ligand structure on the reaction is discussed. This was the first investigation of catalytic asymmetric achlorination of b-keto amides. This study has highlighted that a simple chiral squaramide–oxazoline with cheap Cu(OAc)2 H2 O complexes can catalyze this chlorination.  相似文献   

15.
Compared with the well-developed C–C and C–N axial chirality, the asymmetric synthesis of N–N axial chirality remains elusive and challenging. Herein we report the first atroposelective N-acylation reaction of quinazolinone type benzamides with cinnamic anhydrides for the direct catalytic synthesis of optically active atropisomeric quinazolinone derivatives. This reaction features mild conditions and a broad substrate scope and produces N–N axially chiral compounds with high yields and very good enantioselectivities. Besides, the synthetic utility of the protocol was proved by a large scale reaction, transformation of the product and the utilization of the product as an acylation kinetic resolution reagent. Moreover, DFT calculations provide convincing evidence for the interpretation of stereoselection.

A highly efficient atroposelective N-acylation reaction of quinazolinone type benzamides with cinnamic anhydrides for the direct catalytic synthesis of optically active atropisomeric quinazolinone derivatives was developed.  相似文献   

16.
An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies. In this protocol, a catalytic amount of additive, a halogenated salt, plays a crucial role in the success. Control experiments and theoretical studies disclosed that the four-membered ring transmetallation transition states which were stabilized by a halide anion are the key to yields and stereochemical outcomes.

An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies.  相似文献   

17.
C(sp3)–H functionalization methods provide an ideal synthetic platform for medicinal chemistry; however, such methods are often constrained by practical limitations. The present study outlines a C(sp3)–H isocyanation protocol that enables the synthesis of diverse, pharmaceutically relevant benzylic ureas in high-throughput format. The operationally simple C–H isocyanation method shows high site selectivity and good functional group tolerance, and uses commercially available catalyst components and reagents [CuOAc, 2,2′-bis(oxazoline) ligand, (trimethylsilyl)isocyanate, and N-fluorobenzenesulfonimide]. The isocyanate products may be used without isolation or purification in a subsequent coupling step with primary and secondary amines to afford hundreds of diverse ureas. These results provide a template for implementation of C–H functionalization/cross-coupling in drug discovery.

A copper-based catalyst system composed of commercially available reagents enables C–H isocyanation with exquisite (hetero)benzylic site selectivity, enabling high-throughput access to pharmaceutically relevant ureas via coupling with amines.  相似文献   

18.
New types of C2-symmetric chiral macrodiolides are readily obtained via chiral N,N′-dioxide-scandium(iii) complex-promoted asymmetric tandem Friedel–Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles. This protocol provides an array of enantioenriched macrodiolides with 16, 18 or 20-membered rings in moderate to good yields with high diastereoselectivities and excellent enantioselectivities through adjusting the length of the tether at the C3 position of indoles. Density functional theory calculations indicate that the formation of macrocycles is more favorable than that of 9-membered-ring lactones in terms of kinetics and thermodynamics. The potential utility of these intriguing chiral macrodiolide molecules is demonstrated in the enantiomeric recognition of aminols and chemical recognition of metal ions.

An asymmetric tandem Friedel–Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles was achieved by using a chiral N,N′-dioxide-scandium(iii) complex.  相似文献   

19.
Methods that enable the rapid construction of multiple C–C bonds using a single catalyst with high diastereo- and enantio-control are particularly valuable in organic synthesis. Here, we report an Ir-catalyzed double allylic alkylation reaction in which bisnucleophilic cyanoacetate reacted successionally with electrophilic π-allyl-Ir species, producing various pseudo-C2-symmetrical cyanoacetate derivatives in high yield with excellent stereocontrol. More challenging sequential allylic alkylation/allylic alkylation with two distinct allylic carbonates that can deliver the corresponding products bearing three contiguous tertiary–quaternary–tertiary stereocenters was also developed by using a modified catalytic system, which is revealed to be associated with the quasi-dynamic kinetic resolution of the initially formed diastereomeric monoallylation intermediates. Notably, stereodivergence for this sequential process depending on a single iridium catalyst was successfully realized, and up to six stereoisomers could be predictably prepared by combining the appropriate enantiomer of the chiral ligand for the iridium catalyst and adjusting the adding sequence of two distinct allylic precursors.

Ir-catalyzed asymmetric double AAA reaction of cyanoacetate was developed, affording cyanoacetate derivatives in high yield with excellent stereocontrol. Notably, quasi-DKR is involved in the sequential protocol with two distinct allylic carbonates.  相似文献   

20.
Pyrido[1,2-a]-1H-indoles are important scaffolds found in many biologically active compounds. Herein, we first developed an IPrAuCl/AgSbF6-catalyzed cycloisomerization of N-1,3-disubstituted allenyl indoles affording pyrido[1,2-a]-1H-indoles. Then the axial-to-central chirality transfer starting from enantio-enriched N-1,3-disubstituted allenylindoles affording optically active pyrido[1,2-a]-1H-indoles has been realized in excellent yields and enantioselectivities. A mechanism has been proposed based on mechanistic studies. Synthetic applications have also been demonstrated.

We reported an IPrAuCl/AgSbF6-catalyzed cycloisomerization of enantio-enriched N-1,3-disubstituted allenylindoles affording optically active pyrido[1,2-a]-1H-indoles in excellent yields and enantioselectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号