首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
The thermochemistry of stepwise hydration of several potassiated amino acids was studied by measuring the gas-phase equilibria, AAK(+)(H(2)O)(n-1) + H(2)O = AAK(+)(H(2)O)(n) (AA = Gly, AL, Val, Met, Pro, and Phe), using a high-pressure mass spectrometer. The AAK(+) ions were obtained by electrospray and the equilibrium constants K(n-1,n) were measured in a pulsed reaction chamber at 10 mbar bath gas, N(2), containing a known partial pressure of water vapor. Determination of the equilibrium constants at different temperatures was used to obtain the DeltaH(n)(o), DeltaS(n)(o), and DeltaG(n)(o) values. The results indicate that the water binding energy in AAK(+)(H(2)O) decreases as the K(+) affinity to AA increases. This trend in binding energies is explained in terms of changes in the side-chain substituent, which delocalize the positive charge from K(+) to AA in AAK(+) complexes, varying the AAK(+)-H(2)O electrostatic interaction.  相似文献   

2.
The first three members of the ErbB family of receptor tyrosine kinases activate a wide variety of signaling pathways and are frequently misregulated in cancer. Much less is known about ErbB4. Here we use tandem mass spectrometry to identify 19 sites of tyrosine phosphorylation on ErbB4, and protein microarrays to quantify biophysical interactions between these sites and virtually every SH2 and PTB domain encoded in the human genome. Our unbiased approach highlighted several previously unrecognized interactions and led to the finding that ErbB4 can recruit and activate STAT1. At a systems level, we found that ErbB4 is much more selective than the other ErbB receptors. This suggests that ErbB4 may enable ErbB2 and ErbB3 to signal independently of EGFR under normal conditions, and provides a possible explanation for the protective properties of ErbB4 in cancer.  相似文献   

3.
Die Kristallstruktur der Diphenyldithiophosphinsäure (C6H5)2P(S)SH wurde röntgenographisch bei tiefer Temperatur und Normaltemperatur aus Einkristalldiffraktometerdaten bestimmt und bis zu R-Werten von 0,037 (140 K, (sin Θ)/λ < 0,81 Å?1) und 0,035 (293 K, (sin Θ)/λ < 0,64 Å?1) verfeinert. Die Verbindung kristallisiert in der monoklinen Raumgruppe P21/c mit den bei 140 K (in Klammern: 293 K) gemessenen Gitterkonstanten a = 9,824(3) (9,887), b = 10,061(3) (10,175), c = 14,342(4) (14,433) Å, β = 122,08(3) (121,73)° und V = 1201,1 (1234,9) Å3, Z - 4. Im Kristall sind individuelle Moleküle über fast lineare S? H…?S-Wasserstoffbrückenbindungen zu schraubenförmig gewundenen Ketten verknüpft. Bei 140 K beträgt der S…?S-Abstand innerhalb der Brücke 3,790(1) Å; die weiteren geometrischen Daten der Wasserstoffbrücke sind: d(S? H): 1,25(2), d(S…?H): 2,56(2), d(P? S): 2,077(1), d(P?S): 1,954(1) Å, ? (S? H…?S): 169,5(14), ? (P? S…?S): 98,87(2), ? (P?S…?S): 96,65(2)°. Investigations on Compounds Containing S? H…?S Hydrogen Bonds. Crystal Structure of Diphenyldithiophosphinic Acid at 140 and 293 K The crystal structure of diphenyldithiophosphinic acid (C6H5)2P(S)SH was determined from X-ray diffraction data collected at 140 and 293 K and was refined to R factors of 0.037 (140 K, (sin Θ)/λ < 0.81 Å?1) and 0.035 (293 K, (sin Θ)/λ < 0.64 Å?1) respectively. The compound crystallizes in the monoclinic space group P21/c with unit cell parameters at 140 K (in parentheses: at 293 K): a = 9.824(3) (9.887), b = 10.061(3) (10.175), c = 14.342(4) (14.433) Å, β = 122.08(3) (121.73)° and V = 1201.1 (1234.9) Å3, Z = 4. In the crystalline state individual molecules are linked together by nearly linear S? H…?S hydrogen bonds so that endless helical chains are formed. At 140 K the S…?S distance within the hydrogen bond is 3.790(1) Å; the other distances and angles associated with the bridge are: d(S? H): 1,25(2), d(S…?H): 2,56(2), d(P? S): 2,077(1), d(P?S): 1.954(1) Å, ? (S? H…?S): 169.5(14), ? (P? S…?S): 98.87(2), ? (P? S…?S): 96.65(2)°.  相似文献   

4.
MacBeath and colleagues (Kaushansky et al., 2008) use a protein array technology to find binding partners of ErbB4 in a genome-wide and quantitative fashion, shedding new light on how ErbB4 initiates cellular signaling events and why ErbB4 is not a potent oncogene.  相似文献   

5.
6.
Identification of small-molecule targets remains an important challenge for chemical genetics. We report an approach for target identification and protein discovery based on functional suppression of chemical inhibition in vitro. We discovered pirl1, an inhibitor of actin assembly, in a screen conducted with cytoplasmic extracts. Pirl1 was used to partially inhibit actin assembly in the same assay, and concentrated biochemical fractions of cytoplasmic extracts were added to find activities that suppressed pirl1 inhibition. Two activities were detected, separately purified, and identified as Arp2/3 complex and Cdc42/RhoGDI complex, both known regulators of actin assembly. We show that pirl1 directly inhibits activation of Cdc42/RhoGDI, but that Arp2/3 complex represents a downstream suppressor. This work introduces a general method for using low-micromolar chemical inhibitors to identify both inhibitor targets and other components of a signaling pathway.  相似文献   

7.
me3Si? CCl2?Sime2Cl (me ? CH3) läßt sich mit n-buLi (bu ? C4H9) bei–100°C (Lösungsmittel THF/Äther) in me3Si? CCl(Li)? Sime2Cl a überführen. das mit meJ me3Si? CClme? Sime2Cl bildet. Wird a in Abwesenheit eines Abfangreagenzes langsam erwärmt, so bildet sich unter Abspaltung von LiCl (Cl aus der SiCl-Gruppe) über eine reaktive Zwischenstufe des Bicyclobutans b . Die Struktur von b ist durch NMR-Untersuchung, Röntgenstrukturanalyse und Abbaureaktionen gesichert. Mit HBr bzw. CH3OH werden die Si? C-Bindungen der Dreiringe in b gespalten, so daß sich me3Si? CH2? C(Sime2X)2Sime3 (X ? Br, OCH3) bildet. Formation of Organosilicon Compounds. 85. Formation, Reactions, and Structure of 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl)-1,3-disilabicyclo[1, 1, 0]butane me3Si? CCl2? Sime2Cl (me ? CH3) with n-buLi (bu ? C4H9) at –100°C (solvent: THF/ether) yields me3Si? CCl(Li)? Sime2Cl a , which forms me3Si? CClme? Sime2Cl with meI. By warming a slowly in absence of any trapping reagent the bicyclobutane b is obtained via a reactive intermediate under elimination of LiCl (Cl from the SiCl group). The structure of b is established by nmr investigations, X-ray structure determination and chemical derivatisation.  相似文献   

8.
9.
The statin drug Simvastatin is a HMG-CoA reductase inhibitor that has been widely used to lower blood lipid. However, the drug is clinically observed to reposition a significant suppressing potency on glioblastoma (GBM) by unexpectedly targeting diverse kinase pathways involved in GBM tumorigensis. Here, an inverse screening strategy is described to discover potential kinase targets of Simvastatin. Various human protein kinases implicated in GBM are enriched to define a druggable kinome; the binding behavior of Simvastatin to the kinome is profiled systematically via an integrative computational approach, from which most kinases have only low or moderate binding potency to Simvastatin, while only few are identified as promising kinase hits. It is revealed that Simvastatin can potentially interact with certain known targets or key regulators of GBM such as ErbB, c-Src and FGFR signaling pathways, but exhibit low affinity to the well-established GBM target of PI3K/Akt/mTOR pathway. Further assays determine that Simvastatin can inhibit kinase hits EGFR, MET, SRC and HER2 at nanomolar level, which are comparable with those of cognate kinase inhibitors. Structural analyses reveal that the sophisticated T790 M gatekeeper mutation can considerably reduce Simvastatin sensitivity to EGFR by inducing the ligand change between different binding modes.  相似文献   

10.
Protein tyrosine phosphatases play important roles in many signaling cascades involved in human disease. The identification of druglike inhibitors for these targets is a major challenge, and the discovery of suitable phosphotyrosine (pY) mimetics remains one of the key difficulties. Here we describe an extension of tethering technology, "breakaway tethering", which is ideally suited for discovering such new chemical entities. The approach involves first irreversibly modifying a protein with an extender that contains both a masked thiol and a known pY mimetic. The extender is then cleaved to release the pY mimetic, unmasking the thiol. The resulting protein is screened against a library of disulfide-containing small molecule fragments; any molecules with inherent affinity for the pY binding site will preferentially form disulfides with the extender, allowing for their identification by mass spectrometry. The ability to start from a known substrate mimimizes perturbation of protein structure and increases the opportunity to probe the active site using tethering. We applied this approach to the anti-diabetic protein PTP1B to discover a pY mimetic which belongs to a new molecular class and which binds in a novel fashion.  相似文献   

11.
We studied the effect of fluorescently labeling proteins on protein-ligand reactions. Unlabeled ligands (streptavidin-binding peptides and rabbit immunoglobulin G (IgG) as antigen targets) are immobilized on epoxy-functionalized glass slides. Unlabeled and Cy3-labeled protein probes from the same batch (streptavidin and goat antibodies) subsequently react with the surface-immobilized targets. By monitoring in situ the surface mass density change using an oblique-incidence reflectivity difference scanning microscope (a label-free detector), we measured k(on) and k(off) for streptavidin-peptide reactions and antibody-antigen reaction. We found that (1) equilibrium dissociation constants, defined as K(D) = k(off)/k(on), for streptavidin-peptide reactions increases by a factor of 3-4 when the solution-phase streptavidin is labeled with Cy3 dye and (2) K(D) for reactions of solution-phase goat anti-rabbit antibodies with rabbit IgG targets also change significantly when the goat antibodies are labeled with Cy3 dye.  相似文献   

12.
Cell‐based screening is a powerful approach to identify novel chemical modulators and biological components of relevant biological processes. The canonical Wnt pathway is essential for normal embryonic development and tissue homeostasis, and its deregulation plays a crucial role in carcinogenesis. Therefore, the identification of new pathway members and regulators is of significant interest. By means of a cell‐based assay monitoring Wnt signaling we identified the pyrrolocoumarin Pyrcoumin as inhibitor of canonical Wnt signaling. Target identification and validation revealed that Pyrcoumin is a competitive inhibitor of dCTP pyrophosphatase 1 (dCTPP1). We demonstrate a yet unknown interaction of dCTPP1 with ubiquitin carboxyl‐terminal hydrolase (USP7) that is counteracted by dCTPP1 inhibitors. These findings indicate that dCTPP1 plays a role in regulation of Wnt/β‐catenin signaling most likely through a direct interaction with USP7.  相似文献   

13.
《Comptes Rendus Chimie》2005,8(5):815-821
Cellular signaling pathways induced by growth-factor receptors with tyrosine kinase activity are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We review here our data constituting an alternative way to interrupt over-expressed signaling pathway by inhibiting protein-protein interactions. In our approach, the adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides and peptidomimetics with very high affinities for either SH3 or SH2 domains of Grb2 were rationally designed from structural data. We describe their synthesis, their capacity to interrupt the signaling pathway and their anti-proliferative activity. To cite this article: M. Vidal et al., C. R. Chimie 8 (2005).  相似文献   

14.
Neurotrophins protect neurons against excitotoxicity; however the signaling mechanisms for this protection remain to be fully elucidated. Here we report that activation of the phosphatidyl inositol 3 kinase (PI3K)/Akt pathway is critical for protection of hippocampal cells from staurosporine (STS) induced apoptosis, characterized by nuclear condensation and activation of the caspase cascade. Both nerve growth factor (NGF) and brain-derived growth factor (BDNF) prevent STS-induced apoptotic morphology and caspase-3 activity by upregulating phosphorylation of the tropomyosin receptor kinase (Trk) receptor. Inhibition of Trk receptor by K252a altered the neuroprotective effect of both NGF and BDNF whereas inhibition of the p75 neurotrophin receptor (p75NTR) had no effect. Impairment of the PI3K/Akt pathway or overexpression of dominant negative (DN)-Akt abolished the protective effect of both neurotrophins, while active Akt prevented cell death. Moreover, knockdown of Akt by si-RNA was able to block the survival effect of both NGF and BDNF. Thus, the survival action of NGF and BDNF against STS-induced neurotoxicity was mediated by the activation of PI3K/Akt signaling through the Trk receptor.  相似文献   

15.
Majucin‐type sesquiterpenes from Illicium sp., such as jiadifenolide ( 2 ), jiadifenin ( 3 ), and (1R,10S)‐2‐oxo‐3,4‐dehydroxyneomajucin ( 4 , ODNM), possess a complex caged chemical architecture and remarkable neurotrophic activities. As such, they represent attractive small‐molecule leads against various neurodegenerative diseases. We present an efficient, enantioselective, and unified synthesis of 2 , 3 , and 4 and designed analogues that diverge from tetracyclic key intermediate 7 . The synthesis of 7 is highlighted by the use of an enantioselective Robinson annulation reaction (construction of the AB rings), a Pd‐mediated carbomethoxylation reaction (construction of the C ring), and a one‐pot oxidative reaction cascade (construction of the D ring). Evaluation of the neurotrophic activity of these compounds led to the identification of several highly potent small molecules that significantly enhanced the activity of nerve growth factor (NGF) in PC‐12 cells. Moreover, efforts to define the common pharmacophoric motif suggest that substitution at the C‐10 center significantly affects bioactivity, while the hemiketal moiety of 2 and 3 and the C‐1 substitution might not be critical to the neurotrophic activity.  相似文献   

16.
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20?507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 ? resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.  相似文献   

17.
Heptalene, a nonaromatic, bicyclic 12 π‐electron system with a twisted structure, is of great interest with regard to its potential Hückel aromaticity in the two‐electron oxidized or reduced forms. The synthesis of thiophene‐fused heptalene 5 from the reductive transannular cyclization of bisdehydro[12]annulene 4 , and its solid‐state structure, which was confirmed by X‐ray crystallographic analysis, is presented. Chemical reduction of 5 readily generated the corresponding dianion, which was successfully isolated as [(K[2.2.2]cryptand)+]2 5 2?. The X‐ray crystallographic analysis of the dianion revealed a shallower saddle structure for the heptalene moiety and a lesser degree of bond alternation relative to 5 . 1H NMR spectroscopy exposed the effect of a diamagnetic ring current on dianion 5 2?, which was corroborated by nucleus‐independent chemical shift (NICS) calculations. These results demonstrate that the heptalene dianion, containing 14 π‐electrons, does indeed exhibit pronounced degrees of Hückel aromaticity.  相似文献   

18.
ErbB4, a receptor tyrosine kinase of the ErbB family, plays crucial roles in cell growth and differentiation, especially in the development of the heart and nervous system. Ligand binding to its extracellular region could modulate the activation process. To understand the mechanism of ErbB4 activation induced by ligand binding, we performed one microsecond molecular dynamics (MD) simulations on the ErbB4 extracellular region (ECR) with and without its endogenous ligand neuregulin1β (NRG1β). The conformational transition of the ECR-ErbB4/NRG1β complex from a tethered inactive conformation to an extended active-like form has been observed, while such large and function-related conformational change has not been seen in the simulation on the ECR-ErbB4, suggesting that ligand binding is indeed the active inducing force for the conformational transition and further dimerization. On the basis of MD simulations and principal component analysis, we constructed a rough energy landscape for the conformational transition of ECR-ErbB4/NRG1β complex, suggesting that the conformational change from the inactive state to active-like state involves a stable conformation. The energy barrier for the tether opening was estimated as ~2.7 kcal/mol, which is very close to the experimental value (1-2 kcal/mol) reported for ErbB1. On the basis of the simulation results, an atomic mechanism for the ligand-induced activation of ErbB4 was postulated. The present MD simulations provide a new insight into the conformational changes underlying the activation of ErbB4.  相似文献   

19.
Ca3Co4O9 (CCO) powder precursors were prepared by the chemical sol–gel route and calcined at various temperatures between 923?K (CCO-923?K) and 1,073?K (CCO-1,073?K). The calcination temperature was found to be a critical factor affecting the microstructure and thermoelectric properties of CCO ceramic bulk samples. The grain size increases with calcination temperature. The nano-crystals with size about 100?nm in the powders calcined at 923?K promote large crystal growth and texture development during sintering. Bulk pellets made from CCO-923?K powder have large crystal grains, uniform grain size distribution, and a high degree of crystal alignment. By contrast, pellets made from CCO powders at higher calcination temperatures have a bimodal distribution of large and small grains and a large amount of randomly oriented grains. Transmission electron microscopy analysis shows that each crystal grain (identified in SEM images) consists of bundles of CCO nano-lamellas. The nano-lamellas within one bundle share the same c-axis orientation and have fiber texture. The electrical resistivity of CCO-923?K is weakly dependent on operating temperature. Compared to the CCO-1,073?K sample, the CCO-923?K sample has the highest power factor, a lower thermal conductivity, and higher electrical conductivity.  相似文献   

20.
Isochronal measurements of dielectric constant and loss are made for poly(isobutyl methacrylate) (PiBMA), poly(n-butyl methacrylate) (PnBMA), poly(isopropyl methacrylate) (PiBMA), and poly(4-methylpentene-1) (P4MP1) at temperatures ranging from 4°K to 250°K. Loss peaks are found around 120°K (10–100 Hz) for PiBMA, PnBMA, and P4MP1. By comparing the activation energy with the calculated potential barrier for the internal rotation of alkyl group in the side chain, the motion responsible for the 120°K peak is concluded to be essentially the rotation of the isopropyl group as a whole for PiBMA and P4MP1 but, for PnBMA, the rotation of n-propyl group accompanied by the rotation of the end ethyl group. Multiple paths of internal rotation are involved with the 120°K peaks of PiBMA and, in particular, PnBMA, which explain differences between PiBMA and PnBMA in the broadness and the temperature location of the 120°K peak. The 120°K peak is in general assigned to a side chain including a sequence? O? C? C? C or ? C? C? C? C. PiPMA without this sequence in the side chain does not show the 120°K peak, but it exhibits the 50°K peak (1 kHz) like poly(ethyl methacrylate). The 50°K peak is assigned to the rotation of ethyl or isopropyl group attached to COO group. Poly-L-valine in which the isopropyl group is directly attached to carbon does not have the 50°K peak. An additional loss peak at 20°K (1 kHz) for P4MP1 is also discussed on the basis of the calculated potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号