首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
De-Ming Kong  Jing Wu  Wei Yang 《Talanta》2009,80(2):459-1145
The peroxidase activities of the complexes of hemin and intermolecular four-stranded G-quadruplexes formed by short-stranded XnGmXp sequences (X = A, T or C), especially TnGmTp sequences, were compared. The results, combining with those of circular dichroism (CD) spectra and acid-base transition study for DNA-hemin complexes, provide some important information about DNAzymes based on G-quadruplex-hemin complexes, such as the formation of a G-quadruplex structure is an important factor for determining whether a DNA sequence can enhance the catalytic activity of hemin; both intramolecular parallel G-quadruplexes and intermolecular four-stranded parallel G-quadruplexes can enhance the catalytic activity of hemin; the addition of T nucleotides to the 5′-end of a G-tract confers corresponding G-quadruplex greatly enhanced catalytic activity, whereas the addition of T nucleotides to the 3′-end of the G-tract has little effect; the high catalytic activity of hemin in the presence of some short-stranded G-rich sequences may be a result of the reduction of the acidity of the bound hemin cofactor. These studies provide more information for the DNA-hemin peroxidase model system, may help to elucidate the structure-function relationship of peroxidase enzymes and to develop novel, highly efficient peroxidase-liking DNAzymes. As a sequence of such an investigation, a new Hg2+ detection method was developed.  相似文献   

2.
G-quadruplexes can bind with hemin to form peroxidase-like DNAzymes that are widely used in the design of biosensors. However, the catalytic activity of G-quadruplex/hemin DNAzyme is relatively low compared with natural peroxidase, which hampers its sensitivity and, thus, its application in the detection of nucleic acids. In this study, we developed a high-sensitivity biosensor targeting norovirus nucleic acids through rationally introducing a dimeric G-quadruplex structure into the DNAzyme. In this strategy, two separate molecular beacons each having a G-quadruplex-forming sequence embedded in the stem structure are brought together through hybridization with a target DNA strand, and thus forms a three-way junction architecture and allows a dimeric G-quadruplex to form, which, upon binding with hemin, has a synergistic enhancement of catalytic activities. This provides a high-sensitivity colorimetric readout by the catalyzing H2O2-mediated oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline -6-sulfonic acid) diammonium salt (ABTS). Up to 10 nM of target DNA can be detected through colorimetric observation with the naked eye using our strategy. Hence, our approach provides a non-amplifying, non-labeling, simple-operating, cost-effective colorimetric biosensing method for target nucleic acids, such as norovirus-conserved sequence detection, and highlights the further implication of higher-order multimerized G-quadruplex structures in the design of high-sensitivity biosensors.  相似文献   

3.
Single nucleotide polymorphisms are the most common type of genetic variations among human beings and can serve as biomarkers for various types of diseases. In this work, based on ligase chain reaction amplification for the production of massive hemin/G-quadruplex DNAzymes to quench the electrochemiluminescent (ECL) emission of quantum dots (QDs), a universal and sensitive single nucleotide polymorphism detection method is described. During the ligase chain reaction process, the mutant K-ras target gene is recycled and exponentially duplicated, leading to the attachment of numerous G-rich sequences on the QD-embedded sensing surface. Upon the addition of the assistant sequences and hemin, numerous hemin/G-quadruplex DNAzymes are formed, which consume the dissolved oxygen in the detection buffer and result in significant quenching of QD ECL emission for sensitive single nucleotide polymorphism determination. The developed method shows a linear range of 50 fM to 50 pM and an estimated detection limit of 45 fM for the mutant K-ras gene. The proposed strategy also exhibits high selectivity towards the mutant K-ras gene against the co-existence of 103-fold excess of the wild-type K-ras gene, which makes our method a useful addition to the alternatives for single nucleotide polymorphism monitoring.  相似文献   

4.
In this work, the suitability of 3,3′,5,5′-tetramethylbenzidine sulfate (TMB) as the substrate of a DNAzyme catalytic system composed of a guanine-quadruplex DNA molecule and hemin was investigated. In the presence of H2O2, the hemin-DNA complex catalyzes the oxidation of TMB to produce two colored products, much like a peroxidase. The color-generating activity of this system could be influenced by several factors such as buffer type, pH value, DNA sequence, reaction time, and concentrations of both the hemin and H2O2. To illustrate the utility of this catalytic system, we designed a colorimetric assay, in which a synthetic oligonucleotide with a sequence complementary to the G-quadruplex DNA was used as the target. A detection limit of 1.86 nM was obtained. Our data have shown that TMB was an excellent colorimetric indicator that reported the peoxidase activities of the widely studied hemin-G-quadruplex DNAzyme system.  相似文献   

5.
An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H2O2-mediated oxidation of the chromogenic enzyme substrate ABTS2? causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs.
Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.
  相似文献   

6.
In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR’s ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM–50 nM with a detection limit of 33 fM (defined as S/N = 3) for TB.  相似文献   

7.
A G-quadruplex-hemin DNAzyme-amplified Ag+-sensing method was developed based on the ability of Ag+ to stabilize C-C mismatches by forming C-Ag+-C base pairs. In this method, only one unlabelled oligonucleotide strand was used. In the absence of Ag+, the oligonucleotide strand formed an intramolecular duplex. The G-rich sequence in the oligonucleotide was partially caged in this duplex structure and cannot fold into the G-quadruplex structure. The addition of Ag+ promoted the formation of another intramolecular duplex in which C-C mismatches were stabilized by C-Ag+-C base pairs, leading to the release of the G-rich sequence which can fold into a G-quadruplex capable to bind hemin to form a catalytically active G-quadruplex-hemin DNAzyme. As a result, a UV-vis absorbance increasing was observed in the H2O2-ABTS (2,2′-azinobis(3-ethylbenzothiozoline)-6-sulfonic acid) reaction system. This “turn-on” process allowed the detection of aqueous Ag+ at concentrations as low as 6.3 nM using a simple colorimetric technique, showing a high selectivity over a range of other metal ions.  相似文献   

8.
Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33 nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins.  相似文献   

9.
徐静  孔德明 《分析化学》2012,(3):347-353
G-四链体DNA酶是由核酸G-四链体与氯化血红素(Hemin)结合后形成的一种具有过氧化物酶活性的人工酶,利用这种DNA酶,可进行多种化学及生物传感器的设计。为提高G-四链体DNA酶类Hg2+传感器的选择性,本研究在传感器的设计过程中引入了分子内裂分G-四链体,即将形成G-四链体的富G序列拆分成两部分,分别放置在Hg2+探测序列的两端。在无Hg2+存在时,部分富G序列被包埋在某一分子内二倍体结构中,无法形成G-四链体。而在Hg2+存在下,Hg2+对T-T碱基错配的稳定能力可以促使Hg2+探测序列形成分子内二倍体结构,并伴随着原有分子间二倍体结构的破坏及分子内裂分G-四链体的生成。利用生成的裂分G-四链体与Hemin作用后检测体系酶活性的提高,实现Hg2+传感器的设计。利用该传感器,可在50~500 nmol/L及2.0~7.5μmol/L两个浓度范围内实现Hg2+的定量检测,检出限为47 nmol/L。由于裂分G-四链体DNA酶的使用强化了传感器对Hg2+的依赖性,极大地提高了设计的Hg2+传感器的选择性。对实际水样的加标回收结果显示,回收率为97.5%~104.5%,证明此传感器可以满足实际水样中痕量Hg2+的分析要求。  相似文献   

10.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

11.
Dual-labeled oligonucleotide derivative, FAT-0, carrying 6-carboxyfluorescein (FAM) and 6-carboxy-tetramethylrhodamine (TAMRA) labels at 5′- and 3′-termini of thrombin-binding aptamer (TBA) sequence 5′-GGTTGGTGTGGTTGG-3′ and its derivatives, FAT-n (n = 3, 5, and 7) were designed and synthesized. FAT-n derivatives contained a TmA spacer (m = 2, 4, and 6, respectively) at 5′-end of TBA sequence. The probes were developed to estimate the spacer effect on FRET efficiency and to identify the best probe for sensing of K+. Circular dichroism (CD), UV-vis absorption, and fluorescence studies revealed that all FAT-n probes could form the intramolecular tetraplex structures after binding K+. Association constants of particular K+/FAT-n complexes were determined using different experimental approaches. Suitability of particular probes for sensitive monitoring of K+ in intra- and extracellular conditions was examined and discussed. Calibration graphs of fluorescence ratio were linear in the K+ concentration range of 2-10 mM for extracellular conditions showing sensitivity of 1.2% mM−1 K+ and for intracellular conditions in the range of 100-200 mM with sensitivity of 0.49% mM−1 K+.  相似文献   

12.
Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg2+) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg2+, the specific coordination between Hg2+ and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H2O2 in the presence of dissolved O2. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H2O2, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg2+ detection with the dynamic concentration range spanning from 1.0 ng L−1 to 10 mg L−1 Hg2+ and a detection limit of 0.5 ng L−1 (2.5 pM) at the 3Sblank level, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

13.
Vacuum ultraviolet photoionization of a gas-phase oligonucleotide anion leads to the formation of a valence hole. This hole migrates towards an energetically favorable site where it can weaken bonds and ultimately lead to bond cleavage. We have studied Vacuum UV photoionization of deprotonated oligonucleotides containing the human telomere sequence dTTAGGG and G-quadruplex structures consisting of four dTGGGGT single strands, stabilized by NH4+ counter ions. The oligonucleotide and G-quadruplex anions were confined in a radiofrequency ion trap, interfaced with a synchrotron beamline and the photofragmentation was studied using time-of-flight mass spectrometry. Oligonucleotide 12-mers containing the 5'-TTAGGG sequence were found to predominantly break in the GGG region, whereas no selective bond cleavage region was observed for the reversed 5'-GGGATT sequence. For G-quadruplex structures, fragmentation was quenched and mostly non-dissociative single and double electron removal was observed.  相似文献   

14.
G-quadruplex containing peroxidase DNAzyme is a complex of hemin and a single-stranded guanine-rich DNA (hemin-binding DNA aptamer), which is used as an attractive catalytic label for biosensing recently. Therein, the hemin-binding DNA aptamer contains four GGG repeats and can fold into a G-quadruplex structure. In this paper, we have developed a new split mode to divide the hemin-binding DNA aptamer into two parts: one possesses three GGG repeats, and another part possesses one GGG repeat, namely, the 3:1 split mode. The combination of G-quadruplex and hemin binding could be used as a sensitive probe for the identification of single nucleotide polymorphisms by giving a color signal, visible to the naked eye at room temperature. The G-quadruplex containing peroxidase DNAzyme utilizes the 3:1 split mode and can be directly used for the identification of SNPs with a detection limit in the nM range when the matching length of the probe is short enough. When the matching length of the probe is relatively long, another method adding competition sequences to the probe could also operate effectively for the identification of SNPs. The results also suggested that we could detect the signal when the mutation sample was only 5% in the total target DNA with a competition strategy.  相似文献   

15.
In this work, an advanced sandwich-type electrochemical aptasensor for thrombin was proposed by integrating hemin/G-quadruplex with functionalized graphene-Pd nanoparticles composites (PdNPs-RGs). The hemin/G-quadruplex formed by intercalating hemin into thrombin binding aptamer (TBA), firstly acted as a NADH oxidase, assisting the oxidation of NADH to NAD+ accompanying with the generation of H2O2 in the presence of dissolved O2. Subsequently, the hemin/G-quadruplex acted as HRP-mimicking DNAzyme that rapidly bioelectrocatalyze the reduction of the produced H2O2. At the same time, the Pd nanoparticles supported on p-iodoaniline functionalized graphene were also adopted to catalyze the reduction of H2O2. Thus, with the dual catalysis, a dramatically amplified electrochemical signal could be obtained. Besides, the avidin–biotin system for binding aptamer sequences on electrodes not only improved the sensitivity of thrombin analysis but also obtained an acceptable repeatability of the aptasensor. With several factors mentioned above, a wide linear ranged from 0.1 pM to 50 nM was acquired with a relatively low detection limit of 0.03 pM (defined as S/N = 3). These excellent performances provided our approach a promising way for ultrasensitive assay in electrochemical aptasensors.  相似文献   

16.
Real-time detection and quantitation of specific amplicons have been achieved using quencher and dye-labeled oligonucleotides such as molecular beacons. The molecular beacon molecule has a fluorescent reporter dye at the 5′-end and a quencher at the 3′-end. When the closed molecular beacon is excited by irradiation, the reporter fluorescence is greatly reduced by quenching through the process of fluorescence resonance energy transfer. When the molecular beacon hybridizes to the target, the stem loop opens making the fluorophore and quencher spatially distinct, thus increasing the reporter dye fluorescence intensity. Labeling of dyes to 5′-end of oligonucleotides has been done typically using manual methods, it is possible to do manual coupling at the milligram scale. Described here is the development of a scalable process for oligonucleotide labeling, which is robust, and has been achieved for 6-carboxynaphthofluorescein by connecting it to a corresponding phosphoramidite [Theisen, P.; McCollum, C.; Upadhya, K.; Jacobson. K.; Vu, H.; Andrus, A.; Tetrahedron Lett.1992, 33, 5033-5036].  相似文献   

17.
Dye-loaded UiO-66 metal–organic framework nanoparticles (NMOFs) modified with catalytic hemin/G-quadruplex DNAzyme labels act as functional hybrid modules for the chemiluminescence resonance energy transfer (CRET) analysis of miRNAs (miRNA-155 or miRNA-21) or genes (p53 or BRCA1). The dye-loaded NMOFs (dye = fluorescein (Fl) or rhodamine 6G (Rh 6G)) are modified with hairpin probes that are engineered to include in their loop domains recognition sequences for the miRNAs or genes, and in their stem regions caged G-quadruplex domains. In the presence of the analytes miRNAs or genes, the hairpin structures are opened, leading, in the presence of hemin, to the self-assembly of hemin/G-quadruplex DNAzyme labels linked to the dye-loaded NMOFs. In the presence of luminol and H2O2, the hemin/G-quadruplex DNAzyme labels catalyze the generation of chemiluminescence that provides radiative energy to stimulate the process of CRET to the dye loaded in the NMOFs, resulting in the luminescence of the loaded dye without external excitation. The resulting CRET signals relate to the concentrations of the miRNAs or the genes and allow the sensitive analysis of miRNAs and genes. In addition, the DNA hairpin-functionalized dye-loaded NMOF sensing modules were further applied to develop amplified miRNA or gene CRET-based sensing platforms. The dye-loaded NMOFs were modified with hairpin probes that include in their loop domain the recognition sequences for miRNA-155 or miRNA-21 or the recognition sequences for the p53 or BRCA1 genes. Subjecting the hairpin-modified NMOFs to the respective miRNAs or genes, in the presence of two hairpins Hi and Hj that include in their stem regions caged G-quadruplex subunit domains, results in the analyte-triggered opening of the probe hairpin linked to the NMOFs, and the opened hairpin tethers induce the cross-opening of the hairpins Hi and Hj by the hybridization chain reaction, HCR, resulting in the assembly of G-quadruplex wires tethered to the NMOFs. The binding of hemin to the HCR-generated chains yields hemin/G-quadruplex DNAzyme wires that enhance, in the presence of luminol/H2O2, the CRET processes in the hybrid nanostructures. These amplification platforms lead to the amplified sensing of miRNAs and genes. By mixing the Fl- and Rh 6G-loaded hairpin-functionalized UiO NMOFs, the multiplexed CRET detection of miRNA-155, miRNA-21 and the p53 and BRCA1 genes is demonstrated.

Hemin/G-quadruplex DNAzyme-modified metal–organic framework nanoparticles act as functional hybrids for the catalyzed oxidation of luminol by H2O2, causing chemiluminescence and activation of chemiluminescence resonance energy transfer to the dye loads.  相似文献   

18.
DNAzymes are single stranded DNA molecules that exhibit catalytic activity and are exploited in medicine, biology and material sciences. Development in this area is related to the many advantages of DNAzymes over conventional protein enzymes, such as thermal stability and simpler preparation. DNAzymes with peroxidase-like activity have recently attracted great interest. To assure such catalytic activity, oligonucleotides have to adopt a G-quadruplex structure, which can bind the hemin molecule. This system facilitates a redox reaction between the target molecule and hydrogen peroxide, which results in the appearance of an oxidized target molecule (product). DNAzymes with peroxidase-mimicking activity have great potential in bioanalytical chemistry. This review presents fundamentals concerning the design and engineering of DNAzymes with peroxidase-like activity, describes their properties and spectral characteristics and shows how DNAzymes can contribute to bioanalytical research. Examples of bioanalytical applications of DNAzymes with peroxidase-like activity include nucleic acid probes with DNAzyme labels for the detection of specific DNA sequences in colorimetric or chemiluminescent assays. Assays for telomerase or methyltransferase activity, which are potential targets in anticancer therapy, are also described in this review. Other applications include the determination of metal cations such as Ag(+), K(+), Hg(2+), Pb(2+) or Cu(2+) and amplified detection of small molecules such as adenosine, cocaine or AMP and proteins such as lysozyme or thrombin. In the last decade, DNAzymes have become part of numerous applications in many areas of science from chemistry to biology to medicine.  相似文献   

19.
A homogeneous hemin/G-quadruplex DNAzyme (HGDNAzyme) based turn-on chemiluminescence aptasensor for interferon-gamma (IFN-γ) detection is developed, via dynamic in-situ assembly of luminol functionalized gold nanoparticles (lum-AuNPs), DNA, IFN-γ and hemin. The G-quadruplex oligomer of the HGDNAzyme was split into two halves, which was connected with the complementary sequence of P1 (IFN-γ-binding aptamer) to form the oligonucleotide P2. P2 hybridized with IFN-γ-binding aptamer and meanwhile assembled onto lum-AuNPs through biotin–streptavidin specific interaction. When IFN-γ was recognized by aptamer, P2 was released into the solution. The two lateral portions of P2 combined with hemin to yield the catalytic hemin/G-quadruplex DNAzyme, which amplified the luminol oxidation for a turn-on chemiluminescence signaling. Based on this strategy, the homogeneous aptasensor enables the facile detection of IFN-γ in a range of 0.5–100 nM. Moreover, the aptasensor showed high sensitivity (0.4 nM) and satisfactory specificity, pointing to great potential applications in clinical analysis.  相似文献   

20.
Although RNA aptamers can show comparable or better specificity and affinity to antibodies and have the advantage of being able to access different live cell compartments, they are often much less stable in vivo. We report here the first aptamer that binds human retinoblastoma protein (RB) and is stable in live cells. RB is both a key protein in cell cycle control and also a tumour suppressor. The aptamer was selected from an RNA library against a unique 12-residue helical peptide derived from RB rather than the whole protein molecule. It binds RB with high affinity (Kd = 5.1 ± 0.1 nM) and is a putative RNA G-quadruplex structure formed by an 18-nucleotide sequence (18E16 - GGA GGG UGG AGG GAA GGG), which may account for its high stability. Confocal fluorescence microscopy of live cells transfected with the aptamer shows it is stable intracellularly and efficient in entering the nucleus where an analogous antibody was inaccessible. The findings demonstrate this aptamer is an advanced probe for RB in live cell applications.

An RNA G-quadruplex aptamer, specific for the human retinoblastoma protein (RB) and highly stable inside cells, is selected and its application to live cell probing of the protein illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号