首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total energy and the conformational hypersurface of the lowest singlet and triplet states of silaethylene, CH2SiH2 have been studied using ab initio SCF MO calculations with unrestricted and restricted Hartree-Fock methods. A minimal and an extended basis set was employed. The ground state is predicted to be a singlet and the lowest triplet state to lie 9.6 kcal/mole above. The estimated correlation energy correction would raise ΔE(T1S0) to ≈ 16 kcal/mole.  相似文献   

2.
Ab initio SCF CI calculations with a minimal STO-3G basis set have been performed on the hydrogen bonded dimers in which H2O is the proton donor to H2CO in its relaxed singlet and triplet n→π* states. Two dimers which are easily interconverted are found in the singet n→π* state with hydrogen bond energies of 1.82 and 1.71 kcal/mole. The equilibrium dimer in the triplet state has a hydrogen bond energy of 2.97 kcal/mole. In both states, hydrogen bond formation occurs at the carbon atom. The structures of the dimers and the nature of the intermolecular surfaces in the regions of hydrogen bond formation are examined. Electron densities and distributions are also discussed.  相似文献   

3.
A configuration-interaction (CI) method in which the interaction matrix is never constructed has been investigated, following the original suggestion of Roos. Two methods have been used (1) for singlet states, which can be represented by a one determinant configuration of doubly occupied orbitals, CI with all singly and doubly excited configurations, (2) for states for which the restricted self-consistent field approximation is a single determinant, CI with all singly and doubly excited determinants. In case (2), the wavefunction may not be exactly an eigenfunction of S 2. The methods were investigated using a double-zeta plus polarisation basis for CH2. Both methods must give the same result for the lowest singlet ground state. Keeping the bond length fixed at 2.10 and 2.04 bohr respectively the bond angle for the singlet and triplet were found to be 100.8 ° and 132.0 °, with energies ?39.0312 a.u. and ?39.0563 a.u. respectively. These are the lowest variational energies obtained for these systems; the singlet-triplet splitting is thus predicted to be 15.4 kcal/mol.  相似文献   

4.
Ab initio molecular orbital theory is used to study carbon-beryllium binding in the lowest singlet and triplet states of CH2Be. When electron correlation is included, both singlet and triplet states are significantly bound relative to the ground states of CH2 and Be fragments.  相似文献   

5.
The comprehensive mechanism survey on the gas‐phase reaction between nickel monoxide and methane for the formation of syngas, formaldehyde, methanol, water, and methyl radical has been investigated on the triplet and singlet state potential energy surfaces at the B3LYP/6‐311++G(3df, 3pd)//B3LYP/6‐311+G(2d, 2p) levels. The computation reveals that the singlet intermediate HNiOCH3 is crucial for the syngas formation, whereas two kinds of important reaction intermediates, CH3NiOH and HNiOCH3, locate on the deep well, while CH3NiOH is more energetically favorable than HNiOCH3 on both the triplet and singlet states. The main products shall be syngas once HNiOCH3 is created on the singlet state, whereas the main products shall be methyl radical if CH3NiOH is formed on both singlet and triplet states. For the formation of syngas, the minimal energy reaction pathway (MERP) is more energetically preferable to start on the lowest excited singlet state other than on the ground triplet state. Among the MERP for the formation of syngas, the rate‐determining step (RDS) is the reaction step for the singlet intermediate HNiOCH3 formation involving an oxidative addition of NiO molecule into the C? H bond of methane, with an energy barrier of 120.3 kJ mol?1. The syngas formation would be more effective under higher temperature and photolysis reaction condition. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

6.
The electron correlation energies of both the ground and n → π* excited states of methylenimine (CH2NH) are investigated by means of ab initio SCF MO CI calculations. Then n → π* singlet and triplet state energies of methylenimine are obtained through 3461-dimensional CI including the singly, doubly and triply excited configurations. the excitation energy from the ground state to the 1(n → π*) state nearly coincides with that obtained in the framework of the singly excited configuration interaction (SECI) procedure. This result suggests that there is good cancellation of the correlation energy between the ground and the excited singlet sates, proving the usefulness of the SECI method for the excitation energies.  相似文献   

7.
The low-lying singlet and triplet states of H2CBe and HCBeH are examined using ab inito molecular orbital theory. In agreement with earlier results, the lowest-lying structure of H2CBe has C2v symmetry and is a triplet with one π electron (3 B1). The results presented here suggest that the lowest-energy singlet structure is the (1B1) open-shell singlet, also with C2v symmetry, at least 2.5 kcal/mol higher in energy. The singlet C2v structure with two π electrons (1A1) is 15.9 kcal/mol higher than 3B1. All of these structures are bound with respect to the ground state of methylene and the beryllium atom. In HCBeH, linear equilibrium geometries are found for the triplet (3Σ) and singlet (1Δ) states. The triplet is more stable than the singlet (1Δ) by 35.4 kcal/mol, and is only 2.9 kcal/mol higher in energy than triplet H2 CBe. Since the transition structure connecting these two triplet molecules is found to be 50.2 kcal/mol higher in energy than H2 CBe, both triplet equilibrium species might exist independently. The harmonic vibrational frequencies of all structures are also reported.  相似文献   

8.
李晓艳  孙政  孟令鹏  郑世钧 《化学学报》2007,65(20):2203-2210
利用量子化学从头算CASSCF方法在6-311+G (d, p)基组水平上对单线态和三线态RN (R=CH3, CH3CH2)异构化反应及RN脱氢反应的微观机理进行了理论研究. 在MP2/6-311+G (d, p)和CCSD/6-311+G (d, p)水平上进行了单点能校正. 单态和三态势能面的交叉点(ISC)的存在清楚地说明了基态反应物3RN异构化为基态产物1R'NH (R'=CH2, CH3CH)的过程. 电子密度拓扑分析显示在整个异构化过程中有两种类型的结构过渡态: 单态反应通道为T型过渡态, 三态反应通道为环状过渡态. 单线态RN脱氢反应通道中“原子-分子键”的存在说明两个H原子是以H2的形式从RN中脱去的.  相似文献   

9.
Rate constant ratios, kd/kc for the disproportionation/combination reaction have been measured as 0.07 ± 0.02 when an H is removed from the CH2 position of the CF3CH2CHCH3 radical and as 0.24 ± 0.03 when the H is removed from the CH3 position in the reaction with the CF3 radical. For the self‐reaction between two CF3CH2CHCH3 radicals, kd/kc has been measured as 0.27 ± 0.03 when the H is removed from the CH2 position and as 0.47 ± 0.04 when the H is removed from the CH3 position. The branching fraction, corrected for the number of hydrogens at each site, is 0.70 favoring the methyl position when the acceptor radical is CF3 and 0.54 when CF3CH2CHCH3 is the acceptor radical. Branching fraction results show that the CF3 substituent on the CF3CH2CHCH3 radical hinders disproportionation when CF3 is the acceptor radical. When the accepting radical is CF3CH2CHCH3 the CF3 substituent may slightly impede the disproportionation reaction, but the branching ratio is nearly statistical. The effect of substituents on the donor radical, CF3CH2CHX, will be discussed for the series X = H, CF3, Cl, and CH3 when the acceptor radical is CF3. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 549–557, 2001  相似文献   

10.
In connection with the reinterpretation of Hund's multiplicity rules for molecules, a detailed study has been made of the energy differences in the total energy and its components for the triplet and singlet Πu states of the hydrogen molecule and the analogous states of the four- and six-membered hydrogen atom rings. For the hydrogen molecule, both SCF and CI studies indicated that the outer electron is considerably more contracted in the triplet than in the singlet state. In both approximations, the energy difference is dominated for all bond distances of chemical and physical significance by the electron-nuclear attraction component and not by the electron repulsion component as predicted by simple first-order perturbation theory. Although the correlation energy for each of the states is of the same magnitude as the energy differences considered here, the difference of the correlation energies is much smaller. It had little effect on the qualitative differences between these states of the hydrogen molecule. For the four- and six-membered rings, SCF studies were made on the lowest singlet and triplet states where one electron was promoted from the σg to a Πu orbital. Even though the coupled electrons were more delocalized in these cases, the electron repulsion became relatively more important. However in all cases, the lower state had the highest electron repulsion energy and lower electron-nuclear attraction. The triplet state continued to have the more contracted outer open-shell orbital.  相似文献   

11.
Several common basis sets, ranging from minimal to double-zeta, are applied to study the neutral singlet and triplet as well as positive- and negative-ion doublet states of cyclodisiloxane. The effect of d-polarization function exponents on the equilibrium geometries and energies is analyzed. The d-type functions seem to be essential in the basis set of silicon, whereas their presence on oxygen is less critical. The optimum exponents (with respect to SCF energy) are determined to be 0.45 for Si and 0.60 for O, very close to those recommended for the 6–31G** basis set. The best structural predictions are obtained with the 6–31G(2d, p) basis set, which contains two sets of d functions on the heavy atoms. The predicted Si? O bond length is 166 pm; the Si? Si and O? O distances are 237 and 232 pm, respectively, which correspond to an O—Si? O angle of 88.6°. The ground state is found to be a singlet. All higher states have longer Si? O bonds and Si—Si distances, whereas O—O distances are shorter. The energy separation between the singlet and other states is modified by electron correlation (MP treatment) by only a few kcal/mol.  相似文献   

12.
Ab initio calculations on the structure and geometry of the three isomers of N2H2 (trans-diimide, cis-diimide, and 1,1-dihydrodiazine) were performed both on HF and CI level using gaussian basis sets with polarization functions. The trans and cis isomers have singlet ground states; the trans isomer is found to be lower in energy than the cis isomer by 6.9 kcal/mol (HF) and 5.8 kcal/mol (CI), respectively. The barrier for the trans-cis isomerization is predicted to be 56 (HF) and 55 (CI) kcal/mol. H2 N=N has a triplet ground state with a non-planar equilibrium geometry and a rather long NN bond of 1.34 Å. Its lowest singlet state, however, is planar with an NN double bond of 1.22 Å; it is found to lie about 3 kcal/mol above the triplet and 26 kcal/mol above the singlet ground state of trans-diimide.  相似文献   

13.
Oxygen adsorption on Ag(331) is analyzed in a cluster approximation using the density functional theory (DFT) method. Adsorption centers (AC) for the bridge (S2) and three-center (S3) coordinations of oxygen are identified on the stepwise face Ag(331) and the Ag-O bond energies at these centers are calculated. For atomic adsorption, the Ag-O bond strength varies from 50 to 65 kcal/mole, depending on AC. The heat of molecular adsorption DH = 5 kcal/mole for S2(L1-L2) type AC. The molecule is oriented parallel to Ag(110) between the terraces with R(O-O) = 1.34 å Calculations showed that the ground state of the O2Ag20(331) system is a triplet, but a part of spin density is delocalized on silver atoms, so that the spin density on oxygen ρs(O) = 0.46 (ρs = 1.0 for the free O2 molecule). The energy of the singlet state is 9 kcal/mole greater than that of the ground state.  相似文献   

14.
By photolyzing (CF2H)2CO and (CFH2)2CO the hydrogen atom abstraction reactions of CF2H radicals with (CF2H)2CO, H2, D2, CH4, C2H6, n? C4H10 and iso? C4H10, and the reactions of CFH2 radicals with (CFH2)2CO and n? C4H10, have been studied. Arrhenius parameters for these reactions are compared with related systems. From a knowledge of the activation energies for the forward and reverse reactions a value of the bond dissociation energy, D(CF2H? H) = 97.4 ± 1.3 kcal mole?1 at a mean temperature of 543°K is obtained. This value is subject to much uncertainty due to possible compensation effects in the Arrhenius parameters. These effects are discussed for this and the other reactions, and the data suggest that D(CF2H? H) is approximately 100 kcal mole?1, and that D(CFH2? H) is very similar. Other literature data tend to confirm these approximate values.  相似文献   

15.
Qualitative arguments and preliminary theoretical studies by Harrison suggest that lithiosilylene (SiHLi) may have a triplet electronic ground state. This possibility has been confirmed in the present detailed ab initio quantum mechanical study. Using double-zeta and double-zeta plus polarization basis sets, the different low-lying electronic states of SiHLi have been investigated using self-consistent-field and configuration interaction methods. The triplet ground state potential surface is very flat, with two nearly degenerate minima at θ (HSiLi) values of 137° and 48°, respectively. The lowest singlet state lies ~ 7 kcal higher in energy and is predicted to have an equilibrium bond angle of ~93°, much like the parent silylene SiH2. Vibrational frequencies are predicted for all stationary points.  相似文献   

16.
The geometries and energies of beryllium clusters up to Be5 are examined using ab initio molecular orbital theory. Allowances are made for electron correlation with Møller—Plesset perturbation theory to fourth order. Correlation is found to have a dramatic effect on the relative energies of the several structures examined for Be4 and Be5. Furthermore, the effect of d-type basis functions on the correlation energy results in an increased binding energy for the clusters. Be2 is only weakly bound. For Be3, the best estimate of the binding energy is 6 kcal/mole for the singlet equilateral triangle. Be4 is tetrahedral in its ground state and the estimated binding is 56 kcal/mole. The best structure for Be5 is a singlet trigonal bipyramid, and the binding energy is 88 kcal/mole at the highest level of theory used.  相似文献   

17.
The OH+ cation is a well‐known diatomic for which the triplet (3Σ?) ground state is 50.5 kcal mol?1 more stable than its corresponding singlet (1Δ) excited state. However, the singlet forms a strong donor–acceptor bond to argon with a bond energy of 66.4 kcal mol?1 at the CCSDT(Q)/CBS level, making the singlet ArOH+ cation 3.9 kcal mol?1 more stable than the lowest energy triplet complex. Both singlet and triplet isomers of this molecular ion were prepared in a cold molecular beam using different ion sources. Infrared photodissociation spectroscopy in combination with messenger atom tagging shows that the two spin isomers exhibit completely different spectral signatures. The ground state of ArOH+ is the predicted singlet with a covalent Ar?O bond.  相似文献   

18.
A simple electrostatic model of point dipoles is used which permits direct calculation of the activation energies for the addition of the molecules H2O, H2S, H3N, and H3P to olefins. These calculated values agree with the known experimental data to within ±2 kcal/mole on the average. It was found that the best fit could be obtained with a polar transition state that corresponded to a reduction in bond order from 1 to ½ for the bond-breaking coordinates and an increase in bond order from 0 to 0.18 for the bond-forming coordinates. The replacement of a hydrogen atom of the species H2O, H2S, H3N, or H3P by a polarizable methyl group is expected to stabilize the charge on the central atoms. The following stabilization energies for the pairs H2O? CH3OH, H2S? CH3SH, H3N? CH3NH2, H3P? CH3PH2 were calculated: ?4.8 kcal/mole, ?0.7 kcal/mole, ?1.9 kcal/mole, ?0.8 kcal/mole, respectively.  相似文献   

19.
Summary We compute the potential energy surfaces of 12 electronic states of OsH2 (four quintet, four triplet, and four singlet) arising from5 D ground state of the Os atom as well as triplet and singlet excited states using the complete active space multiconfiguration self-consistent field (CAS-MCSCF) followed by multireference configuration interaction (MRCI) and relativistic CI (RCI) calculation which include up to 430,000 configurations. We find that the5 D ground state of Os atom does not insert into H2 while the excited3 F state of Os does. The3 B 1 ground state of OsH2 (there are two other nearly degenerate states) in the absence of spin-orbit coupling was found to be 22 kcal/mol more stable than Os(5 D)+H2. The spin-orbit mixing of3 B 1,3 B 2,3 A 2, and1 A 1 states was so strong that it induces significant change in bond angles (up to 10°) for OsH2.Dedicated to Prof. Klaus RuedenbergCamille and Henry Dreyfus Teacher-Scholar  相似文献   

20.
1,1‐Dilithioethylene is a prototypical carbon–lithium compound that is not known experimentally. All low‐lying singlet and triplet structures of interest were investigated by using high‐level theoretical methods with correlation‐consistent basis sets up to pentuple ζ. The coupled cluster methods adopted included up to full triple excitations and perturbative quadruples. In contrast to earlier studies that predicted the twisted C2v triplet to be the ground state, we found a peculiar planar Cs singlet ground state in the present research. The lowest excited electronic state of 1,1‐dilithioethylene, the twisted Cs triplet, was found to lie 9.0 kcal mol?1 above the ground state by using energy extrapolation to the complete basis set limit. For the planar Cs singlet and twisted Cs triplet states of 1,1‐dilithioethylene, anharmonic vibrational frequencies were reported on the basis of second‐order vibrational perturbation theory. The remarkably low (2050 cm?1) C?H stretching fundamental (the C?H bond near the bridging lithium) of the singlet state was found to have very strong infrared intensity. These highly reliable theoretical findings may assist in the long‐sought experimental identification of 1,1‐dilithioethylene. Using natural bond orbital analysis, we found that lithium bridging structures were strongly influenced by electrostatic effects. All carbon–carbon linkages corresponded to conventional double bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号