首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
X-ray amorphous iron(III) hydroxide is formed on treating FeCO3 with H2O2. However, oxidation of freshly precipitated FeCO3 by means of air yields — in the absence of foreign cations — γ-FeOOH and α-FeOOH. The latter is obtainable in the pure state provided that FeCO3 is air-oxidised in alkaline medium (excess of Na2CO3).  相似文献   

2.
To understand the fate of 79Se in a repository-like environment, the interactions between iron canister surface with dissolved selenite (SeO3 2−) and selenate (SeO4 2−) in anaerobic solutions have been investigated. Se(IV) immobilization on iron surface was observed to be about 100 times faster than that of Se(VI) at same conditions. An iron surface coated with a FeCO3 layer corrosion product is more reactive than a polished iron to immobilize Se(IV) and Se(VI). The reacted iron surfaces were analysed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Raman spectrometry and micro-X-ray Absorption Spectroscopy (XAS). The result show that Se(IV) and Se(VI) were reduced and precipitated. The dominating phase was found to be FeSe2.  相似文献   

3.
The adsorption of cetyl trimethyl ammonium bromide (CTAB) and two commercial inhibitor base chemicals, an oleic imidazoline salt (OI) and a phosphate ester (PE), onto iron carbonate (FeCO3), was studied by zeta potential measurements in a 0.1 wt% sodium chloride (NaCl) solution under 1 bar CO2 at 22°C, in the absence and presence of a refined low-aromatic oil. The zeta potential of oil-in-water emulsion droplets was also determined. Surface tension of 0.1 wt% and 3 wt% brines was measured as a function of inhibitor concentration. The isoelectric point was pH 6.0 in the 0.1 wt% NaCl solution under 1 bar CO2. The results show that all three inhibitor compounds adsorbed onto the iron carbonate particles both at pH 4.0 and pH 6.0. Adsorption on both negatively charged surfaces and surfaces with no charge were thus found for all inhibitors. The addition of oil had no significant effect on the measured zeta potential on iron carbonate particles.  相似文献   

4.
The SEM, X‐ray diffraction (XRD), and XPS were employed to systematically characterize the component and microstructure of the corrosion scale formed on P110 steel exposed to carbon dioxide (CO2) environment. A loose and porous microstructure in corrosion scale was observed under turbulent flow condition for 120 h at 100 °C with a carbon dioxide partial pressure of 4 MPa in which the principal component was iron carbonate (FeCO3), whereas at 160 °C the corrosion scale was composed mainly of FeCO3 and a little amount of FeO(OH). In addition, complex carbonate (Mg,Fe)CO3 was produced because some Fe positions in FeCO3 lattice were substituted by Mg. It showed that a double‐layer structure of corrosion scale was observed at 160 °C compared with the result at 100 °C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The solubility of siderite (FeCO3) at 25°C under constant CO2 partial pressure [p(CO2)] was determined in NaCl solutions as a function of ionic strength. The dissolution of FeCO3(s) for the reaction
has been determined as a function of pH = – log[H+]. From these values we have determined the equilibrium constant for the stoichiometric solubility to FeCO3(s) in NaCl
These values have been fitted to the equation
with a standard error of s = 0.15. The extrapolated value of log(K o sp) – 10.9 in water is in good agreement with data in the literature (– 10.8 to – 11.2) determined in solutions of different composition and ionic strength.The measured values of the activity coefficient, T(Fe2+) T(CO3 2–), have been used to estimate the stability constant for the formation of the FeCO3 ion pair, K*(FeCO3). The values of K*(FeCO3) have been fitted to the equation (s = 0.09)
The value of log[K o(FeCO3)] in water found in this study (6.3 ± 0.2) is slightly higher than the value found from extrapolations in 1.0 m NaClO4 solutions (5.9 ± 0.2). These differences are related to the model used to determine the activity coefficients of the Fe(II) and carbonate species in the two solutions.  相似文献   

6.
The forms and quantities of iron species in corrosion product samples from natural gas pipelines were examined, using a continuous-flow sequential extraction system. Sequential extraction consists of four steps that dissolve water soluble iron (FeSO4), acid soluble iron (FeCO3), reducible iron (Fe-(oxyhydr)oxides) and oxidisable iron (FeS2) fractions, respectively. Selectivity of extracting reagents for particular iron species was evaluated by determination of co-extracted anions, using ion chromatography, and evolved CO2, using indirect flame atomic absorption spectrometer (FAAS). Iron was found predominantly in the reducible fraction (61–99%), indicating that Fe-(oxyhydr)oxides are the major constituents of the corrosion products.   相似文献   

7.
Open-circuit potential-time and spectral measurements were performed on ironelectrodes in aqueous solutions containing calcium carbonate to simulateground-water, to which an amount of carbon tetrachloride was added. In the case of apreoxidized iron electrode, the injection of the chlorinated aliphatic hydrocarbonresulted in the formation of carbonate-containing green rust. In situ identification,performed by Raman spectroscopy, was based on bands at ca. 433, 509, and1053 cm–1, which were assigned, respectively, to the Fe2+—OH stretching modeof green rust, the Fe3+—OH stretching mode of green rust, and the stretchingvibrations of carbonate ions in the interlayer regions of the green rust. Theassignment of the Fe2+—OH and Fe3+–OH stretching mode bands was confirmedby parallel experiments using D2O solution. The results of the open-circuitpotential-time experiments are in good agreement with literature thermodynamic datafor iron in carbonate-containing aqueous solutions.  相似文献   

8.
Summary Tris(dicarboxylate) complexes of iron(III) with oxalate, maleate, malonate and phthalate viz. K3[Fe(C2O4)3]×3H2O (1), K3[Fe(OOCCH2COO)3]×3H2O (2), K3[Fe(OOCCH=CHCOO)3]×3H2O (3), K3[Fe(OOC-1,2-(C6H4)-COO)3]×3H2O (4) have been synthesized and characterized using a combination of physicochemical techniques. The thermal decomposition behaviour of these complexes have been investigated under dynamic air atmosphere upto 800 K. All these complexes undergo a three-step dehydration/decomposition process for which the kinetic parameters have been calculated using Freeman-Carrol model as well as using different mechanistic models of the solid-state reactions. The trisoxalato and trismalonato ferrate(III) complexes undergo rapid dehydration at lower temperature below 470 K. At moderately higher temperatures (i.e. >600 and 500 K, respectively) they formed bis chelate iron(III) complexes. The trismalonato and trismaleato complexes dehydrate with almost equal ease but the latter is much less stable to decomposition and yields FeCO3 below 760 K. The cis-dicarboxylate complexes particularly with maleate(2-) and phthalate(2-) ligands are highly prone to the loss of cyclic anhydrides at moderately raised temperatures. The thermal decomposition of the tris(dicarboxylato)iron(II) to iron oxide was not observed in the investigated temperature range up to 800 K. The dehydration processes generally followed the first or second order mechanism while the third decomposition steps followed either three-dimensional diffusion or contracting volume mechanism.  相似文献   

9.
Natural sphalerite samples collected from the Baia Sprie ore deposit (Romania) were analyzed through Raman spectroscopy, SEM-EDX and XRD. The most intense Raman lines at 300, 331 and 350 cm−1 were used to improve iron determination method from sphalerites by Raman spectroscopy. It is well known that the iron content of synthetic sphalerite can be quantified by measuring the height of Raman lines (h1, h3). By using the new h2/h3 and (h1 + h2)/h3 ratios and two additional linear equations, this method is improved and becomes suitable to natural sphalerites. The results are in good agreement with the SEM-EDX data.  相似文献   

10.
In the present work alkaline iron oxide nanoparticles are synthesized by a novel solvo thermal approach and characterized exhaustively by various complementary techniques. Field emission scanning electron microscopy (FESEM) studies reveal that the size of nanoparticles is in the range of 31.5 nm to 96.9 nm. Energy-dispersive X-ray spectroscopy spectral analysis reveals the presence of oxygen, carbon, iron, and sodium. The X-ray diffraction studies confirm the formation of tetragonal NaFeO2 as the major phase along with orthorhombic NaFeO2·H2O and rhombohedral FeCO3 (siderite) as the minor phases. Fourier transform infrared spectroscopy exhibits peaks due to the stretching and bending vibrations of O-H, C=O, CH3-N, CH3, C-H, C-N, and Fe-O groups. Differential scanning calorimetry (DSC) results display an endothermic peak at 100.85°C and a very small endothermic peak at 791.56°C with 819.73 mJ and 349.28 mJ energies respectively. These DSC peaks can be correlated with thermal gravimetric analysis (TGA) peaks representing 31.04% weight loss and 7.70% weight loss respectively in the sample at around 160°C and 980°C respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号