首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemisorption of 1,3,4‐oxadiazole‐2‐thiol (ODT) on gold nanorods has been investigated by using surface‐enhanced Raman spectroscopy (SERS) and density functional theory (DFT). Although most of the SERS spectra have remarkable similarity to the normal Raman spectra of the pure analyte, the adsorption of ODT on a gold surface leads to a drastic change in its Raman spectrum and distinct vibrational features are obtained with gold nanorods and spherical nanoparticles. Simulated Raman spectra for hybrid systems that consist of an oxadiazole moiety coordinated to a Au20 gold cluster provided valuable information about the coordination mode and enabled us to assign vibration modes.  相似文献   

2.
A novel method has been reported for 2,6-dichlorophenol using surface-enhanced Raman scattering (SERS). SiO2/gold composites were selected as the SERS substrates to provide the response of gold nanoparticles. Molecular imprinting was subsequently used for the development of a specific detector to 2,6-dichlorophenol with precipitation polymerization. The molecularly imprinted polymer provided sensitive and selective SERS detection for the determination of 2,6-dichlorophenol. The intensity and concentration obeyed a linear relationship from 1?×?10?5 to 1?×?10?9?mol?L?1 2,6-dichlorophenol. The sensitivity of SERS with the molecularly imprinted polymers provides a promising approach for practical analysis.  相似文献   

3.
Non-metallic materials have emerged as a new family of active substrates for surface-enhanced Raman scattering (SERS), with unique advantages over their metal counterparts. However, owing to their inefficient interaction with the incident wavelength, the Raman enhancement achieved with non-metallic materials is considerably lower with respect to the metallic ones. Herein, we propose colourful semiconductor-based SERS substrates for the first time by utilizing a Fabry-Pérot cavity, which realize a large freedom in manipulating light. Owing to the delicate adjustment of the absorption in terms of both frequency and intensity, resonant absorption can be achieved with a variety of non-metal SERS substrates, with the sensitivity further enhanced by ≈100 times. As a typical example, by introducing a Fabry-Pérot-type substrate fabricated with SiO2/Si, a rather low detection limit of 10−16 M for the SARS-CoV-2S protein is achieved on SnS2. This study provides a realistic strategy for increasing SERS sensitivity when semiconductors are employed as SERS substrates.  相似文献   

4.
An ultrasensitive surface‐enhanced Raman spectroscopy (SERS) sensor based on rolling‐circle amplification (RCA)‐increased “hot‐spot” was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core‐shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer‐by‐layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single‐stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10?12 to 1.0×10?8 M and a detection limit of 4.2×10?13 M , and showed good performance in real serum samples.  相似文献   

5.
等离子体金属(金、银)纳米结构因其特有的理化性能,被广泛应用于表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)传感及可穿戴应力传感领域。其中,SERS是一种应用贵金属纳米材料增强拉曼散射信号的检测技术,该技术灵敏度高、特异性强,已被广泛用于生物医学、环境监测、食品药品检测等领域。随着电子检测技术和柔性电子材料的快速发展,柔性可穿戴传感技术也得到了快速发展,且取得了大量的研究成果。SERS检测技术主要依赖于贵金属纳米增强基底材料,而基于贵金属纳米结构的可穿戴传感元件对人体微应力、微应变的传感具有极高的灵敏度。SERS增强基底材料与可穿戴应力传感元件材料具有互通互用性,将贵金属纳米SERS基底应用于柔性可穿戴式检测,这是SERS检测技术比较新颖的、尚未深入研究的应用领域之一。该文综述了贵金属溶胶纳米结构的材料组成分类以及该类材料在SERS和可穿戴应力传感中的应用,并分析了胶体贵金属纳米结构组成及成分对SERS传感、可穿戴应力传感灵敏度、可重复性及稳定性的影响,最后展望了贵金属胶体纳米结构在SERS传感和柔性可穿戴应用中的发展趋势。  相似文献   

6.
First principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au–Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au–Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano-texture were considered by numerical FDTD simulations of light intensity distribution for the nano-textured Au, Ag, and Au–Ag alloy and compared with experimental results. For the chemical insights of the enhancement, the DFT calculations with the dispersion interaction were performed using Au20, Ag20, and Au10Ag10 clusters of a pyramidal structure for SERS modeling. Binding of 22BPY to the clusters was simulated by considering possible arrangements of vertex and planar physical as well as chemical adsorption models. The DFT results indicate that 22BPY prefers a coplanar adsorption on a (111) face with trans-conformation having close energy difference to cis-conformation. Binding to pure Au cluster is stronger than to pure Ag or Au–Ag alloy clusters and adsorption onto the alloy surface can deform the surface. The computed Raman spectra are compared with experimental data and assignments for pure Au and Ag models are well matching, indicating the need of dispersion interaction to reproduce strong Raman signal at around 800 cm–1. This work provides insight into 3D character of SERS on nanorough surfaces due to different binding energies and bond length of nanoalloys. © 2018 Wiley Periodicals, Inc.  相似文献   

7.
We report on a facile immunoassay for porcine circovirus type 2 (PCV2) based on surface enhanced Raman scattering (SERS) using multi-branched gold nanoparticles (mb-AuNPs) as substrates. The mb-AuNPs in the immunosensor act as Raman reporters and were prepared via Tris base-induced reduction and subsequent reaction with p-mercaptobenzoic acid (pMBA). They possess good stability and high SERS activity. Subsequently, the modified mb-AuNPs were covalently conjugated to the monoclonal antibody (McAb) against the PCV2 cap protein to form SERS immuno nanoprobes. These were captured in a microtiterplate via a immunoreaction in the presence of target antigens. The effects of antibody concentration, reaction time and temperature on the sensitivity of the immunoassay were investigated. Under optimized assay conditions, the Raman signal intensity at 1,076 cm?1 increases logarithmically with the concentrations of PCV2 in the concentration ranging from 8?×?102 to 8?×?106 copies per mL. The limit of detection is 8?×?102 copies per mL. Compared to conventional detecting methods such as those based on PCR, the method presented here is rapid, facile and very sensitive.
Figure
A simple and novel approach to detect porcine circovirus type 2 using surface enhanced Raman scattering (SERS) of multi-branched gold nanoparticles is demonstrated, it has a higher sensitivity than polymerase chain reaction and ELISA.  相似文献   

8.
《印度化学会志》2022,99(11):100753
Density Functional Theory (DFT) computations were performed to investigate the optical properties of dihydropyrimidine (DHP) and metal clusters of copper (Cu), gold (Au), and silver (Ag). The charge transfers from the metal cluster to DHP through the NH group are revealed by molecular electrostatic potential (MEP) surface and Mulliken charge analysis. Bonding and antibonding orbitals of the DHP-adsorbed metal clusters are responsible for the surface resonance peak in the UV–Vis spectra of DHP adsorbed metal clusters. The polarizability values of DHP-adsorbed on metal clusters are very high in comparison with that of pristine DHP, which suggests an increase in the Non-linear optical (NLO) effect. Our study explores that the DHP adsorbed metal clusters could be used for the NLO materials. The vibrational modes of DHP are enhanced in the DHP adsorbed metal clusters due to surface-enhanced Raman scattering (SERS). Solvation energy is found to be ?21.01, ?29.37, and ?27.82 kcal/mol for DHP-Ag3/Au3/Cu3 which means the DHP-adsorbed metal clusters are stable in thr aqueous medium. The atom in molecule-reduced density gradient (AIM-RDG) isosurface shows weak non-covalent interactions in each DHP adsorbed metal clusters.  相似文献   

9.
Several methods and materials have been explored for the sensitive and practicable detection of polycyclic aromatic hydrocarbons (PAHs). However, it is still a challenge to develop simple and cost-effective sensing techniques for PAHs. Herein we report the synthesis and construction of Fe3O4@Au SERS substrate. This magnetic substrate was composed by Fe3O4 microspheres and Au NPs. The size, morphology, and surface composition of Fe3O4@Au were characterized by multiple complimentary techniques including scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The spatial distributions of electro-magnetic field enhancement around Fe3O4@Au was calculated using finite difference time domain (FDTD) simulations. As a result of its remarkable sensitivity, the Fe3O4@Au-based SERS assay has been applied to detect the 16 EPA priority PAHs. The LODs achieved by our method (100–5 nM, 16.6–1.01 μg L−1) make it promising for the rapid screening of highly contaminated cases. As a proof-of-concept study, the substrate was applied in SERS sensing of PAHs in river matrix. The 16 PAHs could be differentiated based upon their characteristic SERS peaks. Most importantly, the detection was successfully conducted using a portable Raman spectrometer, which could be used for on-site monitoring of PAHs.  相似文献   

10.
Surface enhanced Raman scattering (SERS) is a powerful technique for characterizing adsorbed species and processes at metallic surfaces. The giant signal enhancement (104–106 larger than normal Raman scattering) makes this technique sensitive to even sub-monolayer amounts of adsorbate on a surface. Consequently, the application of SERS to the in situ study of electrochemical processes provides useful mechanistic and structural information. In this review, advantages and limitations of electrochemical SERS techniques are presented along with experimental information about the nature of the metal-adsorbate interactions occurring in various aqueous and non-aqueous systems. Special emphasis is given to experimental results; however, the salient features of the enhancement theories are highlighted. Adsorbate orientation and SERS surface selection rules are discussed.  相似文献   

11.
Surface enhanced Raman spectroscopy (SERS) is a powerful optical sensing technique that can detect analytes of extremely low concentrations. However, the presence of enough SERS probes in the detection area and a close contact between analytes and SERS probes are critical for efficient acquisition of a SERS signal. Presented here is a light‐powered micro/nanomotor (MNM) that can serve as an active SERS probe. The matchlike AgNW@SiO2 core–shell structure of the nanomotors work as SERS probes based on the shell‐isolated enhanced Raman mechanism. The AgCl tail serves as photocatalytic nanoengine, providing a self‐propulsion force by light‐induced self‐diffusiophoresis. The phototactic behavior was utilized to achieve enrichment of the nanomotor‐based SERS probes for on‐demand biochemical sensing. The results demonstrate the possibility of using photocatalytic nanomotors as active SERS probes for remote, light‐controlled, and smart biochemical sensing on the micro/nanoscale.  相似文献   

12.
《中国化学快报》2023,34(7):107771
In this paper, CuO/TiO2 p-n heterojunction was developed as a new surface enhanced Raman scattering (SERS) substrate to magnify Raman signal of 4-mercaptobenzoic acid (4-MBA) molecule. In the heterojunction-molecule system, CuO as an “electron capsule” can not only offer more electrons to inject into the surface state energy level of TiO2 and consequently bring additional charge transfer, but also improve photogenerated carrier separation efficiency itself due to strong interfacial coupling in the interface of heterojunction, which together boost SERS performance of the heterojunction substrate. As expected, owing to the enhanced charge collection capacity and the improvement of photogenerated carrier separation efficiency derived from internal electric field and strong interface coupling provided in the interface of heterojunction, this substrate exhibits excellent SERS detection sensitivity towards 4-MBA, with a detection limit as low as 1 × 10−10 mol/L and an enhancement factor of 8.87 × 106.  相似文献   

13.
A novel strategy, involving anchoring and un-anchoring of coumarin based fluorophore, has been established for the selective detection of Au3+ species. Selective sensing of Gold (Au3+) was triggered due to alkynophilicity of gold ions to create lateral fluorescence of a latent fluorophore. The 4-methyl-2-oxo-2H-chromen-7-yl 2-(2-phenylethynyl) benzoate (CEB) probe was synthesized by reacting 7-hydroxy-4-methylcoumarin with iodo-benzoic acid. CEB probe has an absorption at 300 nm and 335 nm which decreases gradually and new absorption appeared at 406 nm due to Au3+ promoted ester hydrolysis selectively over other metal ions with great sensitivity, which accompanies a turn on fluorescence change produced by 7-hydroxy coumarin. The principle behind this sensing strategy is activation of triple bond induced uniquely by Au+3 ions leading to cascade and delivers active fluorophore. The sensing mechanism was proposed and supported by 1H NMR, MS and TD-DFT experiments. The density functional theory (DFT) and time dependent density functional theory (TD-DFT) theoretical results of the CEB-probe and Au3+ reaction is in good agreement with the experimental results. Additionally, probe could be well incorporated onto the test strips for effective detection of Au3+.  相似文献   

14.
The synthesis of tetranuclear gold complexes, a structurally unprecedented octanuclear complex with a planar [AuI8] core, and pentanuclear [AuI4MI] (M=Cu, Ag) complexes is presented. The linear [AuI4] complex undergoes C?H functionalization of carbonyl compounds under mild reaction conditions. In addition, [AuI4AgI] catalyzes the carbonylation of primary amines to form ureas under homogeneous conditions with efficiencies higher than those achieved by gold nanoparticles.  相似文献   

15.
An ultrasensitive surface enhanced Raman scattering (SERS) method has been designed to selectively and sensitively detect lysozyme. The gold chip as the detection substrate, the aptamer‐based target‐triggering cascade multiple cycle amplification, and gold nanoparticles (AuNPs) bio‐barcode Raman probe enhancement on the gold substrate are employed to enhance the SERS signals. The cascade amplification process consists of the nicking enzyme signaling amplification (NESA), the strand displacement amplification (SDA), and the circular‐hairpin‐assisted exponential amplification reaction (HA‐EXPAR). With the involvement of an aptamer‐based probe, two amplification reaction templates, and a Raman probe, the whole circle amplification process is triggered by the target recognition of lysozyme. The products of the upstream cycle (NESA) could act as the “DNA trigger” of the downstream cycle (SDA and circular HA‐EXPAR) to generate further signal amplification, resulting in the immobility of abundant AuNPs Raman probes on the gold substrate. “Hot spots” are produced between the Raman probe and the gold film, leading to significant SERS enhancement. This detection method exhibits excellent specificity and sensitivity towards lysozyme with a detection limit of 1.0×10?15 M . Moreover, the practical determination of lysozyme in human serum demonstrates the feasibility of this SERS approach in the analysis of a variety of biological specimens.  相似文献   

16.
The Wagner interaction parameter ? Au Au and first-order enthalpy parameter η Au Au in Cu-Au melts at 1550 K were calculated in terms of the lattice solution model and statistical theory of low-concentration melts. The h i potential of the approach of two gold atoms in the face-centered cubic lattice of copper was used. The theoretical parameter ? Au Au = 3.2 was satisfactorily close to the experimental value ? Au Au = 3.7, whereas the theoretical enthalpy parameter agreed with its experimental value only in sign and the order of magnitude.  相似文献   

17.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

18.
Ethyl carbamate, a by-product of fermentation and storage with widespread occurrence in fermented food and alcoholic beverages, is a compound potentially toxic to humans. In this work, a new approach for quantitative detection of ethyl carbamate in alcoholic beverages, based on surface-enhanced Raman scattering (SERS), is reported. Individual silver-coated gold nanoparticle colloids are used as SERS amplifiers, yielding high Raman enhancement of ethyl carbamate in three kinds of alcoholic beverages (vodka, Obstler, and white rum). The characteristic band at 1,003 cm-1, which is the strongest and best reproducible peak in the SERS spectra, was used for quantitative evaluation of ethyl carbamate. The limit of detection, which corresponds to a signal-to-noise ratio of 3, was 9.0?×?10-9 M (0.8 μg?·?L-1), 1.3?×?10-7 M (11.6 μg?·?L-1), and 7.8?×?10-8 M (6.9 μg?·?L-1), respectively. Surface-enhanced Raman spectroscopy offers great practical potential for the in situ assessment and identification of ethyl carbamate in the alcoholic beverage industry.  相似文献   

19.
A rapid and sensitive method was developed here for separation and detection of multiple pathogens in food matrix by magnetic surface-enhanced Raman scattering (SERS) nanoprobes. Silica-coated magnetic probes (MNPs@SiO2) of ∼100 nm in diameter were first prepared via the reverse microemulsion method using cetyltrimethylammonium bromide as a surfactant and tetraethyl orthosilicate as the silica precursor. The as-prepared MNPs@SiO2 were functionalized with specific pathogen antibodies to first capture threat agents directly from a food matrix followed by detection using an optical approach enabled by SERS. In this scheme, pathogens were first immuno-magnetically captured with MNPs@SiO2, and pathogen-specific SERS probes (gold nanoparticles integrated with a Raman reporter) were functionalized with corresponding antibodies to allow the formation of a sandwich assay to complete the sensor module for the detection of multiple pathogens in selected food matrices, just changing the kinds of Raman reporters on SERS probes. Here, up to two key pathogens, Salmonella enterica serovar Typhimurium and Staphylococcus aureus, were selected as a model to illustrate the probability of this scheme for multiple pathogens detection. The lowest cell concentration detected in spinach solution was 103 CFU/mL. A blind test conducted in peanut butter validated the limit of detection as 103 CFU/mL with high specificity, demonstrating the potential of this approach in complex matrices.  相似文献   

20.
采用金种子原位生长法,以SiO_2胶体晶体为模板,H_2O_2为还原剂实现了三维有序金纳米壳(GNSs)结构的可控制备,并对其生长过程中表面增强拉曼光谱(SERS)性能进行了研究。实验结果表明,通过控制反应时间、反应温度、还原剂H_2O_2及生长液K_2CO_3-HAuCl_4的量等参数实现了三维有序GNSs阵列的可控批量制备,并可根据需要去除SiO_2内核得到中空有序GNSs结构。通过对其SERS性能的研究,发现SiO_2表面完全被Au纳米粒子覆盖的粗糙结构具有最佳的SERS性能,且对应的中空有序GNSs结构显示出更优异的SERS活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号