首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
An overview of the recent bibliography concerning the N‐heterocyclic carbene (NHC)‐mediated activation of tetravalent silicon compounds is presented. Diverse reactions are discussed, such as the NHC‐mediated addition of silyl pronucleophiles to a variety of electrophiles, NHC‐promoted organic and inorganic polymerisation and the reduction of CO2 by hydrosilanes as facilitated by NHCs. The review concludes with a discussion of the current knowledge regarding the role of Lewis acid–base NHC–Si interactions in the mechanistic course of these reactions.  相似文献   

2.
The synthesis of base‐stabilized boryl and borylene complexes is reported. An N‐heterocyclic carbene (NHC)‐stabilized iron–dihydroboryl complex was prepared by two different routes including methane liberation and salt elimination. A range of base‐stabilized iron–dichloroboryl complexes was prepared by addition of Lewis bases to boryl complexes. Base‐stabilized, cationic monochloroborylene complexes were synthesized from these boryl complexes by halide abstraction by using weakly coordinating anions.  相似文献   

3.
Stable compounds with a Ge?Ge bond are usually prepared under relatively harsh reaction conditions that are incompatible with many functional groups. In particular, unsaturated functionalities are not tolerated owing to their facile reaction with low‐coordinate germanium compounds. We now report the synthesis of an imino‐functionalized germanium(II) species, stabilized by coordination of an N‐heterocyclic carbene (NHC), by reaction of an isonitrile with a heavier NHC‐coordinated vinylidene. Removal of the NHC by a Lewis acid results in dimerization to the corresponding digermene with a Ge?Ge bond. The reversibility of this process is demonstrated by addition of two equivalents of NHC to the isolated digermene.  相似文献   

4.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

5.
This report describes the synthesis and characterization of novel N‐heterocyclic carbene (NHC)–gold(I) complexes and their bioconjugation to the CCRF‐CEM‐leukemia‐specific aptamer sgc8c. Successful bioconjugation was confirmed by the use of fluorescent tags on both the NHC–AuI complex and the aptamer. Cell‐viability assays indicated that the NHC–AuI–aptamer conjugate was more cytotoxic than the NHC–gold complex alone. A combination of flow cytometry, confocal microscopy, and cell‐viability assays provided clear evidence that the NHC–AuI–aptamer conjugate was selective for targeted CCRF‐CEM leukemia cells.  相似文献   

6.
Based on 1‐amino‐4‐hydroxy‐triptycene, new saturated and unsaturated triptycene‐NHC (N‐heterocyclic carbene) ligands were synthesized from glyoxal‐derived diimines. The respective carbenes were converted into metal complexes [(NHC)MX] (M=Cu, Ag, Au; X=Cl, Br) and [(NHC)MCl(cod)] (M=Rh, Ir; cod=1,5‐cyclooctadiene) in good yields. The new azolium salts and metal complexes suffer from limited solubility in common organic solvents. Consequently, the introduction of solubilizing groups (such as 2‐ethylhexyl or 1‐hexyl by O‐alkylation) is essential to render the complexes soluble. The triptycene unit infers special steric properties onto the metal complexes that enable the steric shielding of selected areas close to the metal center. Next, chiral and meso‐triptycene based N‐heterocyclic carbene ligands were prepared. The key step in the synthesis of the chiral ligand is the Buchwald–Hartwig amination of 1‐bromo‐4‐butoxy‐triptycene with (1S,2S)‐1,2‐diphenyl‐1,2‐diaminoethane, followed by cyclization to the azolinium salt with HC(OEt)3. The analogous reaction with meso‐1,2‐diphenyl‐1,2‐diaminoethane provides the respective meso‐azolinium salt. Both the chiral and meso‐azolinium salts were converted into metal complexes including [(NHC)AuCl], [(NHC)RhCl(cod)], [(NHC)IrCl(cod)], and [(NHC)PdCl(allyl)]. An in situ prepared chiral copper complex was tested in the enantioselective borylation of α,β‐unsaturated esters and found to give an excellent enantiomeric ratio (er close to 90:10).  相似文献   

7.
A fused π‐helical N‐heterocyclic carbene (NHC) system was prepared and examined through its diastereoisomerically pure cycloiridiated complexes. The latter display light‐green phosphorescence with unusually long lifetimes and circular polarization that depends on both the helical NHC P /M stereochemistry and the iridium Δ/Λ stereochemistry. These unprecedented features are attributed to extended π conjugation within the helical carbenic ligand and efficient helicene‐NHC–Ir interaction.  相似文献   

8.
The preparation of a series of imidazolium salts bearing N‐allyl substituents, and a range of substituents on the second nitrogen atom that have varying electronic and steric properties, is reported. The ligands have been coordinated to a copper(I) centre and the resulting copper(I)–NHC (NHC=N‐heterocyclic carbene) complexes have been thoroughly examined, both in solution and in the solid‐state. The solid‐state structures are highly diverse and exhibit a range of unusual geometries and cuprophilic interactions. The first structurally characterised copper(I)–NHC complex containing a copper(I)–alkene interaction is reported. An N‐pyridyl substituent, which forms a dative bond with the copper(I) centre, stabilises an interaction between the metal centre and the allyl substituent of a neighbouring ligand, to form a 1D coordination polymer. The stabilisation is attributed to the pyridyl substituent increasing the electron density at the copper(I) centre, and thus enhancing the metal(d)‐to‐alkene(π*) back‐bonding. In addition, components other than charge transfer appear to have a role in copper(I)–alkene stabilisation because further increases in the Lewis basicity of the ligand disfavours copper(I)–alkene binding.  相似文献   

9.
The reactivitiy of tetrakis(trifluoromethyl)cyclopentadienone towards different C‐based Lewis bases, such as N‐heterocyclic carbenes (NHC), ylides and isonitriles, are reported. While sterically not hindered carbenes were found to yield kinetic adducts by regiospecific nucleophilic attack at the position adjacent to the carbonyl group of the ketone, bulkier nucleophiles afforded the thermodynamically more stable O‐bridged zwitterions. Interestingly, isonitriles were found to dimerize and trimerize under the same reaction conditions, forming bicyclic products that evolve differently depending on the nature of the substituents.  相似文献   

10.
A series of novel benzimidazolium bromides containing bulky 3,5‐di‐tert ‐butyl group were synthesized in high yields as N‐heterocyclic carbene (NHC) ligands. These NHC ligands were metallated with Ag2O under moderate conditions to give novel silver–NHC complexes. The structures of all compounds were characterized using 1H NMR, 13CNMR, infrared and elemental analysis techniques, which supported the proposed structures. The silver–NHC complexes were screened for their in vitro antimicrobial activities against the standard bacterial strains Enterococcus faecalis , Staphylococcus aureus , Escherichia coli and Pseudomonas aeruginosa and the fungal strains Candida albicans and C. tropicalis . The results showed that most of the silver–NHC complexes inhibited the growth of all bacterial strains and fungal strains and were found to display effective antimicrobial activity against different microorganisms.  相似文献   

11.
Copper and silver N‐heterocyclic carbene (NHC) complexes were prepared through a simple, base‐free protocol involving the decomposition of corresponding imidazol(in)ium‐2‐carboxylates under thermolytic conditions and a subsequent reaction of the in situ generated carbenes with copper(I) or silver(I) chloride, respectively. The desired NHC metal complexes were isolated with good yields after simple crystallization.  相似文献   

12.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ) and 1H‐benzimidazole ( 1c ) with p‐cyanobenzyl bromide ( 2 ), symmetrically substituted N‐heterocyclic carbene (NHC) [( 3a–c )] precursors, 1‐methylimidazole ( 5a ), 4,5‐dichloro‐1‐methylimidazole ( 5b ) and 1‐methylbenzimidazole ( 5c ) with benzyl bromide ( 6 ), non‐symmetrically substituted N‐heterocyclic carbene (NHC) [( 7a–c )] precursors were synthesized. These NHC? precursors were then reacted with silver(I) acetate to yield the NHC‐silver complexes [1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4a ), [4,5‐dichloro‐1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4b ), [1,3‐bis(4‐cyanobenzyl)benzimidazole‐2‐ylidene] silver(I) acetate ( 4c ), (1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8a ), (4,5‐dichloro‐1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8b ) and (1‐methyl‐3‐benzylbenzimidazole‐2‐ylidene) silver(I) acetate ( 8c ) respectively. The four NHC‐precursors 3a–c, 7c and four NHC–silver complexes 4a–c and 8c were characterized by single crystal X‐ray diffraction. The preliminary antibacterial activity of all the compounds was studied against Gram‐negative bacteria Escherichia coli, and Gram‐positive bacteria Staphylococcus aureus using the qualitative Kirby‐Bauer disc‐diffusion method. All NHC–silver complexes exhibited medium to high antibacterial activity with areas of clearance ranging from 4 to 12 mm at the highest amount used, while the NHC‐precursors showed significantly lower activity. In addition, all NHC–silver complexes underwent preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 and showed medium to high cytotoxicity with IC50 values ranging from 53 ( ± 8) to 3.2 ( ± 0.6) µM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In order to use H2 as a clean source of electricity, prohibitively rare and expensive precious metal electrocatalysts, such as Pt, are often used to overcome the large oxidative voltage required to convert H2 into 2 H+ and 2 e?. Herein, we report a metal‐free approach to catalyze the oxidation of H2 by combining the ability of frustrated Lewis pairs (FLPs) to heterolytically cleave H2 with the in situ electrochemical oxidation of the resulting borohydride. The use of the NHC‐stabilized borenium cation [(IiPr2)(BC8H14)]+ (IiPr2=C3H2(NiPr)2, NHC=N‐heterocyclic carbene) as the Lewis acidic component of the FLP is shown to decrease the voltage required for H2 oxidation by 910 mV at inexpensive carbon electrodes, a significant energy saving equivalent to 175.6 kJ mol?1. The NHC–borenium Lewis acid also offers improved catalyst recyclability and chemical stability compared to B(C6F5)3, the paradigm Lewis acid originally used to pioneer our combined electrochemical/frustrated Lewis pair approach.  相似文献   

14.
The chemistry of N‐heterocyclic carbenes (NHCs) is dominated by N,N′‐dialkylated or ‐diarylated derivatives. Such NHC ligands are normally obtained by C2‐deprotonation of azolium cations or by reductive elimination from azol‐2‐thiones. A simple one‐step procedure is described that leads to complexes with NH,NH‐functionalized NHC ligands by the oxidative addition of 2‐halogenoazoles to complexes of zero‐valent transition metals.  相似文献   

15.
The synthesis, characterisation and biological activity of water‐soluble Ag(I)‐NHC complexes, general formula Na[(NHC)AgCl] where NHC is a sulfonated and sterically hindered N‐heterocyclic carbene, is reported. The Ag‐NHC complexes (2a–e) were synthesised by reacting the corresponding sulfonated NHC ligands with Ag2O in the presence of NaCl or NaBr in methanol/water (1:1) solution. Synthesised silver (I)‐N‐heterocyclic carbene complexes have been characterised by NMR, micro‐analysis and HRMS spectroscopic methods. The IC50 values of these complexes were determined by a proliferation BrdU enzyme‐linked immunosorbent assay (ELISA) against HeLa (human cervix carcinoma), HT29 (human adenocarcinoma) and L929 (mouse fibroblast) cell lines. These complexes have been highlighted as promising and original platforms for building new types of metalodrug. All new water‐soluble Ag(I) complexes demonstrated remarkable cytotoxic activity against HeLa, HT29 and L929 cell lines.  相似文献   

16.
The first examples of Lewis base catalyzed enantioselective boryl conjugate additions (BCAs) that generate products containing boron‐substituted quaternary carbon stereogenic centers are disclosed. Reactions are performed in the presence of 1.0–5.0 mol % of a readily accessible chiral accessible N‐heterocyclic carbene (NHC) and commercially available bis(pinacolato)diboron; cyclic or linear α,β‐unsaturated ketones can be used and rigorous exclusion of air or moisture is not necessary. The desired products are obtained in 63–95 % yield and 91:9 to >99:1 enantiomeric ratio (e.r.). The special utility of the NHC‐catalyzed approach is demonstrated in the context of an enantioselective synthesis of natural product antifungal (?)‐crassinervic acid.  相似文献   

17.
Metal N‐heterocyclic carbene (NHC) complexes are a promising class of anti‐cancer agents displaying potent in vitro and in vivo activities. Taking a multi‐faceted approach employing two clickable photoaffinity probes, herein we report the identification of multiple molecular targets for anti‐cancer active pincer gold(III) NHC complexes. These complexes display potent and selective cytotoxicity against cultured cancer cells and in vivo anti‐tumor activities in mice bearing xenografts of human cervical and lung cancers. Our experiments revealed the specific engagement of the gold(III) complexes with multiple cellular targets, including HSP60, vimentin, nucleophosmin, and YB‐1, accompanied by expected downstream mechanisms of action. Additionally, PtII and PdII analogues can also bind the cellular proteins targeted by the gold(III) complexes, uncovering a distinct pincer cyclometalated metal–NHC scaffold in the design of anti‐cancer metal medicines with multiple molecular targets.  相似文献   

18.
Herein, we report the synthesis of palladium complexes bearing an N‐heterocyclic carbene (NHC)‐sulfonamide bidentate ligand and their application in ethylene oligomerization and ethylene/polar monomer cooligomerization. These catalysts could smoothly catalyze ethylene oligomerization and ethylene/methyl acrylate cooligomerization albeit the performance was lower compared to that of a NHC–phenoxide catalyst. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 474–477  相似文献   

19.
An efficient and easily scalable NHC–copper(I) halide‐catalyzed addition of terminal alkynes to 1,1,1‐trifluoromethyl ketones, carried out on water for the first time, is reported. A series of addition reactions were performed with as little as 0.1–2.0 mol % of [(NHC)CuX] (X=Cl, Br, I, OAc, OTf) complexes, providing tertiary propargylic trifluoromethyl alcohols in high yields and with excellent chemoselectivity from a broad range of aryl‐ and more challenging alkyl‐substituted trifluoromethyl ketones (TFMKs). DFT calculations were performed to rationalize the correlation between the yield of catalytic alkynylation and the sterics of N‐heterocyclic carbenes (NHCs), expressed as buried volume (%VBur), indicating that steric effects dominate the yield of the reaction. Additional DFT calculations shed some light on the differential reactivity of [(NHC)CuX] complexes in the alkynylation of TFMKs. The first enantioselective version of a direct alkynylation in the presence of C1‐symmetric NHC–copper(I) complexes is also presented.  相似文献   

20.
Salts of meta‐xylyl‐linked N‐ethyl/n‐butyl/benzyl‐substituted bis‐benzimidazolium having hexafluorophosphate counterions have been synthesized. The corresponding binuclear Ag(I)‐N‐heterocyclic carbene complexes were prepared by the reaction of Ag2O. The N‐heterocyclic carbene (NHC) ligand precursor 7 and Ag(I)–NHC complexes 10 and 11 have been structurally characterized by single‐crystal X‐ray diffraction technique. All of the reported compounds have been tested for their anticancer activity using human colorectal (HCT 116) cancer cell lines. Sterically varied benzimidazolium salts displayed significant activity against HCT 116 cell line, yielding IC50 values in the range 0.1–19.4 µ m , while Ag(I)–carbene complexes showed exceptionally good activity (0.2–1.3 µ m ) against tested cancer cell lines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号