首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2018,30(9):1888-1896
Graphene is one of the most studied materials ever, owing to its exceptional electronic, mechanical and thermal properties, which allow for many different types of application. In this review, we shall concentrate on the use of graphene and derivatives for electrochemical sensors and biosensors, where emphasis is placed on the importance of surface functionalization as this permits synergistic combinations with other nanomaterials and biomolecules. In addition to describing recent advances in graphene‐based electroanalytical applications, we discuss a few examples of their use in detecting small biomolecules and in immunosensing for a few diseases using films and composites. Also discussed are the possible methods for mass production of graphene, which is key to low‐cost biosensors for implantable devices and portable systems in point‐of‐care diagnosis.  相似文献   

2.
《化学:亚洲杂志》2017,12(18):2343-2353
Graphene oxide and graphene quantum dots are attractive fluorophores that are inexpensive, nontoxic, photostable, water‐soluble, biocompatible, and environmentally friendly. They find extensive applications in fluorescent biosensors and chemosensors, in which they serve as either fluorophores or quenchers. As fluorophores, they display tunable photoluminescence emission and the “giant red‐edge effect”. As quenchers, they exhibit a remarkable quenching efficiency through either electron transfer or Förster resonance energy transfer (FRET) process. In this review, the origin of fluorescence and the mechanism of excitation wavelength‐dependent fluorescence of graphene oxide and graphene quantum dots are discussed. Sensor design strategies based on graphene oxide and graphene quantum dots are presented. The applications of these sensors in health care, the environment, agriculture, and food safety are highlighted.  相似文献   

3.
The application of graphene‐based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene‐based material, their properties, synthesis routes, and the most important applications in both off‐line and on‐line sample preparation techniques. The discussion of the off‐line approaches includes methods derived from conventional solid‐phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on‐line approaches focus on the use of graphene‐based material mainly in on‐line solid phase extraction, its variation called in‐tube solid‐phase microextraction, and on‐line microdialysis systems.  相似文献   

4.
The detailed records and conclusions on the important advancements in graphene‐based electrochemical biosensors have been reviewed. Due to their outstanding properties, graphene‐based materials have been widely studied for the accurate electrochemical detection of many biomolecules, which is extremely vital to the development of biomedical instruments, clinical diagnosis, and disease treatment. This review discusses the graphene research for the effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and hemoglobin, etc., and the accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, RNA, and carcinoembryonic antigen, etc. In most of the cases, the graphene‐based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long‐term stabilities.  相似文献   

5.
Graphene has a wide range of potential applications, thus tremendous efforts have been put into ensuring that the most direct and effective methods for its large‐scale production are developed. The formation of graphene materials from graphene oxide through a chemical reduction method is still one of the most preferred routes. Numerous methods starting from various reducing agents have been developed to obtain near‐pristine graphene sheets. However, most of the reducing agents are not mechanistically supported by classical organic chemistry knowledge and of those that are supported, they are only theoretically capable of, at most, reducing oxygen‐containing groups on graphene oxide to hydroxyl groups. Herein, we present a mechanistically proven method for the selective defunctionalisation of hydroxyl groups from graphene oxide that is based on ethanethiol–aluminium chloride complexes and provides a graphene material with improved properties. The structural, morphological and electrochemical properties of the graphene materials have been fully characterised based on high‐resolution X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. Our analyses showed that the obtained graphene materials exhibited high heterogeneous electron‐transfer rates, low charge‐transfer resistance and high conductivity as compared to the parent graphene oxide. Moreover, the selective defunctionalisation of hydroxyl groups could potentially allow for the tailoring of graphene properties for various applications.  相似文献   

6.
Graphene, a honeycomb lattice of carbon material with single-atom-layer structure, demonstrates extraordinary mechanical, thermal, chemical and electronic properties. Thus, it has sparked tremendous interests in various fields, such as energy storage and conversion devices, field-effect transistors (FET), chemical sensors and biosensors. In this review, we will first focus on the synthesis method of graphene and the fabrication strategy of graphene-based materials. Subsequently, the construction of graphene-based biosensors are introduced, in which three kinds of biosensors are discussed in details, including the FET, electrochemical biosensors and electrochemiluminescence (ECL) biosensors. The performances of the state-of-the-art biosensors on the detection of biomolecules are also displayed. Finally, we also highlight some critical challenges remain to be solved and the development in this field for further research.  相似文献   

7.
The emergence of nanotechnology has opened new horizons for electrochemical biosensors. This review highlights new concepts for electrochemical biosensors based on different carbon/inorganic hybrid nanoarchitectures. Particular attention will be given to hybrid nanostructures involving 1‐ or 2‐dimensional carbon nanotubes or graphene along with inorganic nanoparticles (gold, platinum, quantum dot (QD), metal oxide). Latest advances (from 2007 onwards) in electrochemical biosensors based on such hybrids of carbon/inorganic‐nanomaterial heterostructures are discussed and illustrated in connection to enzyme electrodes for blood glucose or immunoassays of cancer markers. Several strategies for using carbon/inorganic nanohybrids in such bioaffinity and biocatalytic sensing are described, including the use of hybrid nanostructures for tagging or modifying electrode transducers, use of inorganic nanomaterials as surface modifiers along with carbon nanomaterial label carriers, and carbon nanostructure‐based electrode transducers along with inorganic amplification tags. The implications of these nanoscale bioconjugated hybrid materials on the development of modern electrochemical biosensors are discussed along with future prospects and challenges.  相似文献   

8.
《先进技术聚合物》2018,29(2):687-700
Despite the significant efforts in the synthesis of new polymers, the mechanical properties of polymer matrices can be considered modest in most cases, which limits their application in demanding areas. The isolation of graphene and evaluation of its outstanding properties, such as high thermal conductivity, superior mechanical properties, and high electronic transport, have attracted academic and industrial interest, and opened good perspectives for the integration of graphene as a filler in polymer matrices to form advanced multifunctional composites. Graphene‐based nanomaterials have prompted the development of flexible nanocomposites for emerging applications that require superior mechanical, thermal, electrical, optical, and chemical performance. These multifunctional nanocomposites may be tailored to synergistically combine the characteristics of both components if proper structural and interfacial organization is achieved. The investigations carried out in this aim have combined graphene with different polymers, leading to a variety of graphene‐based nanocomposites. The extensive research on graphene and its functionalization, as well as polymer graphene composites, aiming at applications in the biomedical field, are reviewed in this paper. An overview of the polymer matrices adequate for the biomedical area and the production techniques of graphene composites is presented. Finally, the applications of such nanocomposites in the biomedical field, particularly in drug delivery, wound healing, and biosensing, are discussed.  相似文献   

9.
Graphene has attracted considerable attention in multidisciplinary research fields and shown various promising applications due to its unique structure and extraordinary physicochemical properties. This review covers the latest advances in graphene materials-based chemiluminescence (CL) for sensing. Chemiluminescence resonance energy transfer and luminescence quenching of graphene materials are discussed. Graphene materials, such as graphene nanosheets, graphene quantum dots, graphene oxide, and reduced graphene oxide have been employed successfully in CL systems in recent years. Graphene materials can be utilized as catalysts, platforms, and energy acceptors to improve the performance of CL. Possible challenges and future perspective on this topic are also presented.  相似文献   

10.
Heteroatom‐doped carbon materials have been extensively investigated as metal‐free electrocatalysts to replace commercial Pt/C catalysts in oxygen reduction reactions in fuel cells and Li–air batteries. However, the synthesis of such materials usually involves high temperature or complicated equipment. Graphene‐based sulfur composites have been recently developed to prolong the cycling life of Li–S batteries, one of the most attractive energy‐storage devices. Given the high cost of graphene, there is significant demand to recycle and reuse graphene from Li–S batteries. Herein, we report a green and cost‐effective method to prepare sulfur‐doped graphene, achieved by the continuous charge/discharge cycling of graphene–sulfur composites in Li–S batteries. This material was used as a metal‐free electrocatalyst for the oxygen reduction reaction and shows better electrocatalytic activity than pristine graphene and better methanol tolerance durability than Pt/C.  相似文献   

11.
Graphene is the best‐studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet‐chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo‐functionalization of graphene avoids the formation of defects within the σ‐framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo‐functionalizing graphene. In particular, the differences between GO and oxo‐functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo‐functionalization of graphene.  相似文献   

12.
Graphene films grown on the copper foils using chemical vapor deposition have been emphasized in the previous scientific studies and technical applications because of the high quality/cost ratio. However, no enough attention has been paid to the fundamentally important issue on the stability of graphene/copper interface compared with quality of the grown graphene films, though the properties of graphene/metal interface largely affect the Ohmic contacts in graphene‐based electronics (e.g. high‐frequency graphene transistors). Here, we investigated the electronic structure of graphene/copper interface which has been stored in the ambient conditions for different periods. Raman and photoelectron spectroscopic data indicated that the oxygen species do not prefer to adsorb on the graphene surface but insert into the graphene/copper interface. This results in the p‐doping of graphene, formation of the surface positive dipole, and energy upshift of the graphene's Dirac point. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
氧化石墨烯荧光传感器   总被引:1,自引:0,他引:1  
张昊  崔华 《化学进展》2012,24(8):1554-1559
氧化石墨烯因其独特的光学、表面、机械、电学及热学性质在诸多领域都具有良好的应用前景。利用氧化石墨烯能够有效猝灭荧光体(染料分子、量子点及上转换纳米材料)荧光的特性,结合相关生物分析技术,相继开发了各种荧光传感器。本文综述近年来氧化石墨烯荧光传感器的基本原理及研究进展,主要讨论氧化石墨烯荧光传感器在重金属离子、DNA、蛋白质及生物小分子的分析应用,并对该领域的应用前景进行了展望。  相似文献   

14.
Ming Zhou 《Electroanalysis》2015,27(8):1786-1810
Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self‐powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs‐based self‐powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical‐to‐electrochemical energy transformation, thus obviating the requirement of external power sources. Following my previous review (Electroanalysis­ 2012 , 24, 197–209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs‐based self‐powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs‐based self‐powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co‐stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs‐based self‐powered electrochemical biosensors and logic biosensors are discussed in the end.  相似文献   

15.
DNA是构建纳米技术和生物传感技术新设备的良好构建体。DNA生物传感器由于具有灵敏度高、选择性好等特点,近年来获得了飞速发展。研究发现,金属纳米粒子(MNPs)、碳基纳米材料等一系列纳米材料在传感器设计中提高了电化学DNA传感器的传感性能。本文侧重介绍了场效应晶体管、石墨烯、碳纳米管等新型纳米传感材料,以及基于这些材料的DNA生物传感器的最新进展,最后展望了DNA生物传感器的应用前景。  相似文献   

16.
Early diagnosis of diseases with minimal cost and time-consumption has become achievable due to recent advances in the development of biosensors. These devices use biorecognition elements for the selective interaction with an analyte and the signal read-out is obtained via different types of transducers. The operational characteristics of biosensors have been reported as improving substantially when a diverse range of nanomaterials is employed. This review presents the construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, a nanomaterial currently the subject of intensive studies. Here, the most attractive directions for graphene applications in biosensor preparation are discussed, including novel detection and amplification schemes exploiting graphene’s unique electrochemical, physical and chemical properties. There is probably a very bright future for graphene-based biosensors, but much further work is required to fulfill the high expectations.  相似文献   

17.
Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene‐based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π–π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC‐MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84–13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene‐based SPE disk in environmental analytical.  相似文献   

18.
Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field‐emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super‐high lithium‐storage capacity of 1580 mAh g?1 and a satisfactory cycling performance in lithium–sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene‐based nanocomposites can significantly improve the electrochemical performance of lithium–sulfur batteries.  相似文献   

19.
Graphene nanosheets were produced on the surface of carbon fibers by in situ electrochemical procedure including oxidative and reductive steps to yield first graphene oxide, later converted to graphene. The electrode material composed of graphene‐functionalized carbon fibers was characterized by scanning electron microscopy (SEM) and cyclic voltammery demonstrating superior electrochemical kinetics comparing with the original carbon paper. The interfacial electron transfer rate for the reversible redox process of [Fe(CN)6]3?/4? was found ca. 4.5‐fold higher after the electrode modification with the graphene nanosheets. The novel electrode material is suggested as a promising conducting interface for bioelectrocatalytic electrodes used in various electrochemical biosensors and biofuel cells, particularly operating in vivo.  相似文献   

20.
Graphene‐enhanced Raman scattering (GERS) is emerging as an important method due to the need for highly reproducible, quantifiable, and biocompatible active substrates. As a result of its unique two‐dimensional carbon structure, graphene provides particularly large enhanced Raman signals for molecules adsorbed on its surface. In this work, the GERS signals of a test molecule, 4‐mercaptobenzoic acid (4‐MBA), with reproducible enhancement factors are discussed and compared with surface‐enhanced Raman scattering (SERS) signals from highly active substrates, covered with spherical silver nanoparticles. It is shown that chemical interactions between the molecule and graphene can result in a frequency shift in the graphene‐enhanced Raman signal of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号