首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures and molecular properties of three cyclic tellurium species [Te2N2S]2+ (1 2+ ), [Te2N2SCl]+ (1 + ), and Te2N2SCl2 (1) were studied using Density Functional Theory (DFT) with the aim of analyzing and quantifying the degree of electron delocalization in the rings. The structural data for the AsF6 salt of the cation 1 + , as well as the experimental vibrational frequencies of 1 and 1 + , were compared to calculated structures and vibrational modes. While only the five-membered ring of 1 2+ obeys the classic Hückel aromaticity criteria, reflected in the nature of the π orbitals and natural resonance structures, all the three species are magnetic aromatic according to nucleus-independent chemical shift (NICS). However, the out-of-plane component of the NICS tensor (NICSzz) is able to provide a reliable characterization of the π aromatic character, by showing that successive binding of two chlorine atoms to the same tellurium atom disrupts the π electron delocalization, and that total NICS cannot always be trusted as an aromaticity indicator.  相似文献   

2.
The electronic structure of the (η2-C60)Pd[P(Ph2)C5H4]2Fe complex was calculated by the “hybrid” B3LYP method. Comparison of the experimental X-ray emission C-Kα spectrum and theoretical spectrum of the compound demonstrated that the electron interactions between the C60 core, palladium atom, and organometallic fragment are described correctly in the framework of the quantum chemical method used. The electronic structure of the organometallic fullerene complex can be presented as a set of blocks of orbitals corresponding to different types of chemical bond. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2640–2644, December, 2005.  相似文献   

3.
Ground state geometry and electronic structure of M 4 2- cluster (M = B, Al, Ga) have been investigated to evaluate their aromatic properties. The calculations are performed by employing the Density Functional Theory (DFT) method. It is found that all these three clusters adopt square planar configuration. Results reveal that square planar M 4 2- dianion exhibits characteristics of multifold aromaticity with two delocalised π-electrons. In spite of the unstable nature of these dianionic clusters in the gas phase, their interaction with the sodium atoms forms very stable dipyramidal M4Na2 complexes while maintaining their square planar structure and aromaticity.  相似文献   

4.
The photoelectron spectrum and a density functional computational analysis of the first p-block paddlewheel complex, Bi2(tfa)4, where tfa = (O2CCF3), are reported. The photoelectron spectrum of Bi2(tfa)4 contains an ionization band between the region of metal-based ionizations and the region of overlapping ligand ionizations that is not seen in the photoelectron spectra of d-block paddlewheel complexes. This additional ionization arises from an a1g symmetry combination of the tfa ligand orbitals that is directed for σ bonding with the metals, and the unusual energy of this ionization follows from the different interaction of this orbital with the valence s and p orbitals of Bi compared to the valence d orbitals of transition metals. There is significant mixing between the Bi–Bi σ bond and this a1g M–L σ orbital. This observation led to a re-examination of the ionization differences between Mo2(tfa)4 and W2(tfa)4, where the metal–metal σ and π ionizations are overlapping for the Mo2 molecule but a separate and sharp σ ionization is observed for the W2 molecule. The coalescing of the σ and π bond ionizations of Mo2(tfa)4 is due to greater ligand orbital character in the Mo–Mo σ bond (∼7%) versus the W–W σ bond (∼1%). In tribute to F. Albert Cotton for sharing the beauty of symmetry and the joy and excitement in the exploration of metal–metal bonds.  相似文献   

5.
The results of Density Functional Theory (DFT) calculations on optical properties of vanadium complexes VOCl3, VOCl4 -, VOCl5 2-, as well as the VO4 3- ion, are presented. The spectra of excited states in the range 25000-60000 cm-1 have been analyzed using the time-dependent DFT method (TDDFT). Spectroscopic features of structural defects (low-coordinated (LC) oxygen ions), as well as surface point defects (F+ and F sites) in MgO, have been studied within the cluster approach. The charge-transfer spectra and frequencies of normal vibrations for a number of active site models of finely dispersed oxides MgO and V2O5 on silica have been calculated. Comparison of the obtained results with experimental electronic diffuse reflectance spectra and fundamental frequencies confirms a hypothesis about the structure of active centers of finely dispersed oxide V2O5 on silica as monomeric forms, (O=V-O n ).  相似文献   

6.
The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet state (CH3)2Si=Si: and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has one dominant reaction pathway. The presented rule of this dominant reaction pathway that the 3p unoccupied orbital of Si: in (CH3)2Si=Si: and the π orbital of ethane forming a π → p donor-acceptor bond, resulting in the formation of a three-membered ring intermediate (INT1); Then, INT1 isomerizes to a four-membered ring silylene (P1), which driven by ring-enlargement effect; Due to sp 3 hybridization of Si: atom in the four-membered ring silylene (P1), P1 further combines with ethene to form a silicic bis-heterocyclic compound (P2).  相似文献   

7.
8.
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H2O, NH3, imidazole and CH3CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH3CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH3CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty π orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands.  相似文献   

9.
The reactions of [RuCl2(PPh3)3] with 8-hydroxy-2-methyl-quinoline-7-carboxylic acid was examined, and a novel ruthenium(II) complex—[Ru(PPh3)2(C5H8NO)2]—was obtained. The compound was studied by IR, UV–vis spectroscopy, and X-ray crystallography. The molecular orbital diagram of the complex was calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compound were calculated using the time-dependent DFT method, and the UV–vis spectrum of the compound was discussed, on this basis. The luminescence property of the [Ru(PPh3)2(C5H8NO)2]was examined.  相似文献   

10.
The mechanism of the cycloaddition reaction between singlet H2Si=Si: and formaldehyde has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has three competitive dominant reaction pathways. The reaction rules presented is that the 3p unoccupied orbital of the Si: atom in H2Si=Si: inserts the π orbital of formaldehyde from the oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further generates a four-membered ring silylene (the H2Si–O in the opposite position). In addition, the [2+2] cycloaddition reaction of the two π-bonds in H2Si=Si: and formaldehyde also generates another four-membered ring silylene (the H2Si–O in the syn-position). Because of the unsaturated property of the Si: atom in the two four-membered ring silylenes, the two four-membered ring silylenes could further react with formaldehyde, generating two silicic bis-heterocyclic compounds. Simultaneously, the ring strain of the four-membered ring silylene (the H2Si–O in the syn-position) makes it isomerize to a twisted four-membered ring product.  相似文献   

11.
The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of –2.93 and –51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.  相似文献   

12.
In the compound [Ni(Bptc)2(Bimb)2(H2O)2] (I), where H4Bptc is 3,3′,4,4′-biphenyltetracarboxylic acid; Bimb is 4,4′-bis(1-imidazolyl)biphenyl), Ni(II) has a distorted octahedral coordination geometry, which was bonded with two N atoms from two Bimb ligands, two O atoms from two H2Bptc2− ligands and two water O atoms. The crystal structure of compound I is stabilized by the π-π-stacking and hydrogen bonds interaction.  相似文献   

13.
This paper describes the synthesis of ZrW2O8 by the use of an aqueous citrate-gel method in order to prepare a fine, pure and homogeneous oxide mixture suitable for ceramic processing. The thermal expansion coefficient thus obtained for α-ZrW2O8 is −10.6 × 10−6 °C−1 (50–125 °C) whereas for the β-ZrW2O8 a value of −3.2 × 10−6 °C−1 (200–300 °C) is obtained. The advantages of the use of a sol–gel method is expressed in the very homogeneous end-products. The paper describes crystallographic data, morphological structure and the thermal expansion properties of the ZrW2O8 material. Moreover, photoluminescence and photochromic properties specific to the precursor gel are described and analyzed. These effects support our views that the precursors show homogeneity up to nanometer level.  相似文献   

14.
Density Functional Theory (DFT) was employed to study the geometries, electronic structures, infrared vibrational spectra, and thermodynamic properties of seven isomeric cyclic nitramines of C6H10N8O8 (i.e., TNAD and its six isomers) at the B3LYP/6‐31G* level of theory. The experimental results available for TNAD were used to determine the reliability of the DFT method for generating structural and IR spectroscopic values for these molecular systems. The relative stabilities of the conformers were evaluated from the energy differences of the structures. Detonation properties of various conformers were evaluated using the Kamlet‐Jacobs equations, and it was found that all the calculated results are comparable to the available experimental data. In addition, the calculated results demonstrate that all title compounds can be used as excellent propellant ingredients. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

15.
The electronic and thermodynamic properties of the ‘2 + 1’ tricarbonyltechnetium(I) and -rhenium(I) mixed ligand complexes with N-methylpyridine-2-carboxyamide (MPCA) as a bidentate ligand and chloride, water, or tert-butyl-3-isocyanopropanoate (BCP), were investigated within the framework of Density Functional Theory. The atomic charges of all complexes, polarization of the CO groups, as well as the effect of transfer of π-electron density between the ligands through the metal were calculated and compared. The free energies of the reaction of formation of the isocyanide complexes in aqueous solution were calculated based on calculated total free energies in aqueous solution of the products and the substrates. The dissociation energies of the complexes were also determined in order to rationalize the experimentally observed higher resistance of the rhenium compared to the technetium complexes in the challenge experiments with the standard sulfur-containing amino acids.  相似文献   

16.
The calculations of the electronic structure of layered polyvanadate K2V3O8 were made employing the spin-polarized tight-binding LMTO method. Calculated magnetic moment for K4V6O16 compound phase equals 1.97 μB. V-O interactions were established to be dominating in the chemical bonding generation in this polyvanadate according to the estimated crystal orbital overlap population. The covalent bonds V(2)-V(2) in V(2)2O7 groups and electron density localization on vanadium atoms in isolated pyramids V(1)O5 were found.  相似文献   

17.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

18.
The electron structure of boron fluoride acetyl acetonate F2B(OCCH3)2CH, boron fluoride benzoylacetonate, and two its derivatives is investigated by ultraviolet electron spectroscopy and quantum chemistry in an approximation of the all-electron density functional theory. Sequences and preferential localization of the π levels of conjugated cycles are established, and the violation of coplanarity of the cycles in the presence of the methyl group in the ortho site of the substituent is shown. It is concluded that the values of the ionization energy and the calculated data indicate a sequential increase in the contribution of π orbitals of the benzoic cycle in the UOMO (upper occupied molecular orbital) upon substituting CH3 groups for hydrogen atoms.  相似文献   

19.
The [Pt2(H2P2O5)4]4− ions in the ground and excited states and the excited-state complexes M-[Pt2(H2P2O5)4]3− and M2-[Pt2(H2P2O5)4]2− (M = Ag, Tl) were studied in solution with various density functional theory (DFT) functionals from Gaussian 09 and Amsterdam Density Functional (ADF) programs. Calculated results were compared with ultrafast X-ray solution scattering data. Time dependent DFT (TD-DFT) calculations with the B3PW91 functional and unrestricted open shell calculations with the mPBE functional produce good agreement with the experimental results. Compared to gas phase calculations, the surrounding solvent is found to play an important role to shorten the Pt-Pt and M-Pt (M = Ag, Tl) bond lengths, lowering the molecular orbital energies and influences the molecular orbital transitions upon excitation, which stabilizes the excited transient molecules in solution.  相似文献   

20.
The ability of cyclopentadienyl type derivatives of corannulene C20H10 and fullereneI h -C60 to form η5-π-complexes and the problem of their existence is discussed. MNDO/PM3 calculations of half-sandwich complexes η5-π-MC20H15, η5-π-MC20H 15 + , η5-π-MC60H5, η5-π-MC60H5 and sandwich complexes 2η5-π-M(C20H15)2, 2η5-π-M(C20H15)2, 2η5-π-M(C60H5)2 (M=Si, Ge, Sn, Pb) were performed. For all systems studied, local minima were found on corresponding potential energy surfaces and the heats of formation, geometric parameters, and distributions of effective atomic charges were calculated. Sandwich complexes are most likely to exist with M=Si and Ge. The energy and geometric characteristics of η5-π-complexes of corannulene were compared with those of η5-π-complexes of fullereneI h -C60. It was concluded that the results of quantum-chemical calculations of sandwich type corannulene derivatives can be used for simulation of the geometry and electronic structure of analogous complexes of fullereneI h -C60. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1649–1656, September, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号