首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
We recently used cryoreduction EPR/ENDOR techniques to show that a substrate can modulate the properties of both the monooxygenase active-oxygen intermediates and of the proton-delivery network which encompasses them. In the present report we use Q-band pulsed 19F ENDOR (Mims 3-pulse sequence) to examine the substrate binding geometries of camphor, through use of the 5,5'--difluorocamphor, and 13C ENDOR to examine the binding of 5-methylenyl camphor labeled with 13C at C11. These probes are examined in multiple states of the catalytic cycle of P450cam and its T252A mutant. As part of this investigation we further report a new cryoreduction reaction, the reduction of a ferroheme to the EPR-visible Fe(I) state, and use it to probe the substrate binding to the EPR-silent ferroheme state. Finally we report the solvent kinetic isotope effect on the decay of the camphor complex of the hydroperoxo-ferric intermediate, the first such measurement on an individual step within the P450cam reaction cycle. Following reduction of oxyferrous-P450cam, this step is the rate-limiting step in camphor hydroxylation, and its solv-KIE of 1.8 at 190 K establishes that it involves activation of the hydroperoxo moiety by transfer of the 'second' proton of catalysis. We suggest that the finding that the heme pocket can exist in multiple substates, including multiple substrate binding locations, even in P450cam, along with the established possibility that the hydroperoxo-ferriheme intermediate can react with substrate, may explain the formation of multiple products by P450s.  相似文献   

2.
Epoxidation of olefins by hydroperoxo-ferric cytochrome P450   总被引:2,自引:0,他引:2  
The T252A mutant of cytochrome P450cam is unable to form the oxoferryl "active oxygen" intermediate, as judged by its inability to hydroxylate its normal substrate, camphor. In the present study, we demonstrate that T252A P450cam is nonetheless able to epoxidize olefins, due to the action of a second oxidant. However, as shown in earlier radiolytic studies and by the ability of T252A to reduce dioxygen to hydrogen peroxide, the mutant retains the ability to form the hydroperoxo-ferric reaction cycle intermediate. The present results provide strong evidence that hydroperoxo-ferric P450 can serve as a second electrophilic oxidant capable of olefin epoxidation.  相似文献   

3.
We have employed gamma-irradiation at cryogenic temperatures (77 K and also approximately 6 K) of the ternary complexes of camphor, dioxygen, and ferro-cytochrome P450cam to inject the "second" electron of the catalytic process. We have used EPR and ENDOR spectroscopies to characterize the primary product of reduction as well as subsequent states created by annealing reduced oxyP450, both the WT enzyme and the D251N and T252A mutants, at progressively higher temperatures. (i) The primary product upon reduction of oxyP450 4 is the end-on, "H-bonded peroxo" intermediate 5A. (ii) This converts even at cryogenic temperatures to the hydroperoxo-ferriheme species, 5B, in a step that is sensitive to these mutations.Yields of 5B are as high as 40%. (iii) In WT and D251N P450s, brief annealing in a narrow temperature range around 200 K causes 5B to convert to a product state, 7A, in which the product 5-exo-hydroxycamphor is coordinated to the ferriheme in a nonequilibrium configuration. Chemical and EPR quantitations indicate the reaction pathway involving 5B yields 5-exo-hydroxycamphor quantitatively. Analogous (but less extensive) results are seen for the alternate substrate, adamantane. (iv) Although the T252A mutation does not interfere with the formation of 5B, the cryoreduced oxyT252A does not yield product, which suggests that 5B is a key intermediate at or near the branch-point that leads either to product formation or to nonproductive "uncoupling" and H(2)O(2) production. The D251N mutation appears to perturb multiple stages in the catalytic cycle. (v) There is no spectroscopic evidence for the buildup of a high-valence oxyferryl/porphyrin pi-cation radical intermediate, 6. However, ENDOR spectroscopy of 7A in H(2)O and D(2)O buffers shows that 7A contains hydroxycamphor, rather than water, bound to Fe(3+), and that the proton removed from the C(5) carbon of substrate during hydroxylation is trapped as the hydroxyl proton. This demonstrates that hydroxylation of substrates by P450cam in fact occurs by the formation and reaction of 6. (vi) Annealing at > or = 220 K converts the initial product state 7A to the equilibrium product state 7, with the transition occurring via a second nonequilibrium product state, 7B, in the D251N mutant; in states 7B and 7 the hydroxycamphor hydroxyl proton no longer is trapped. (vii) The present results are discussed in the context of other efforts to detect intermediates in the P450 catalytic cycle.  相似文献   

4.
Roles of the proximal heme thiolate ligand in cytochrome p450(cam).   总被引:3,自引:0,他引:3  
To examine the roles of the proximal thiolate iron ligand, the C357H mutant of P450(cam) (CYP101) was characterized by resonance Raman, UV, circular dichroism, and activity measurements. The C357H mutant must be reconstituted with hemin for activity to be observed. The reconstituted enzyme is a mixture of high and low spin species. Low temperature (10 degrees C), low enzyme concentration (1 microM), high camphor concentration (1 mM), and 5--50 mM buffer concentrations increase the high to low spin ratio, but under no conditions examined was the protein more than 60% high spin. The C357H mutant has a poorer K(m) for camphor (23 vs 2 microM) and a poorer K(d) for putidaredoxin (50 vs 20 microM) than wild-type P450(cam). The mutant also exhibits a greatly decreased camphor oxidation rate, elevated uncoupling rate, and much greater peroxidase activity. Electron transfer from putidaredoxin to the mutant is much slower than to the wild-type even though redox potential measurements show that the electron transfer remains thermodynamically favored. These experiments confirm that the thiolate ligand facilitates the O--O bond cleavage by P450 enzymes and also demonstrate that this ligand satisfies important roles in protein folding, substrate binding, and electron transfer.  相似文献   

5.
Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spectroscopy is employed to measure the dynamics of cyt P450(cam) from Pseudomonas putida on fast time scales using CO bound at the active site as a vibrational probe. The substrate-free enzyme and the enzyme bound to both its natural substrate, camphor, and a series of related substrates are investigated to explicate the role of dynamics in molecular recognition in cyt P450(cam) and to delineate how the motions may contribute to hydroxylation specificity. In substrate-free cyt P450(cam), three conformational states are populated, and the structural fluctuations within a conformational state are relatively slow. Substrate binding selectively stabilizes one conformational state, and the dynamics become faster. Correlations in the observed dynamics with the specificity of hydroxylation of the substrates, the binding affinity, and the substrates' molecular volume suggest that motions on the hundreds of picosecond time scale contribute to the variation in activity of cyt P450(cam) toward different substrates.  相似文献   

6.
Ferric cytochrome P450cam from Pseudomonas putida (P450cam) in buffer solution at physiological pH 7.4 reversibly binds NO to yield the nitrosyl complex P450cam(NO). The presence of 1R-camphor affects the dynamics of NO binding to P450cam and enhances the association and dissociation rate constants significantly. In the case of the substrate-free form of P450cam, subconformers are evident and the NO binding kinetics are much slower than in the presence of the substrate. The association and dissociation processes were investigated by both laser flash photolysis and stopped-flow techniques at ambient and high pressure. Large and positive values of S and V observed for NO binding to and release from the substrate-free P450cam complex are consistent with the operation of a limiting dissociative ligand substitution mechanism, where the lability of coordinated water dominates the reactivity of the iron(III)-heme center with NO. In contrast, NO binding to P450cam in the presence of camphor displays negative activation entropy and activation volume values that support a mechanism dominated by a bond formation process. Volume profiles for the binding of NO appear to be a valuable approach to explain the differences observed for P450cam in the absence and presence of the substrate and enable the clarification of the underlying reaction mechanisms at a molecular level. Changes in spin state of the iron center during the binding/release of NO contribute significantly to the observed volume effects. The results are discussed in terms of relevance for the biological function of cytochrome P450 and in context to other investigations of the related reactions between NO and imidazole- and thiolate-ligated iron(III) hemoproteins.  相似文献   

7.
Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam   总被引:1,自引:0,他引:1  
Oxygenated derivatives of the monoterpene (+)-alpha-pinene are found in plant essential oils and used as fragrances and flavorings. (+)-alpha-Pinene is structurally related to (+)-camphor, the natural substrate of the heme monooxygenase cytochrome P450(cam) from Pseudomonas putida. The aim of the present work was to apply the current understanding of P450 substrate binding and catalysis to engineer P450(cam) for the selective oxidation of (+)-alpha-pinene. Consideration of the structures of (+)-camphor and (+)-alpha-pinene lead to active-site mutants containing combinations of the Y96F, F87A, F87L, F87W, and V247L mutations. All mutants showed greatly enhanced binding and rate of oxidation of (+)-alpha-pinene. Some mutants had tighter (+)-alpha-pinene binding than camphor binding by the wild-type. The most active was the Y96F/V247L mutant, with a (+)-alpha-pinene oxidation rate of 270 nmol (nmol of P450(cam))(-)(1) min(-)(1), which was 70% of the rate of camphor oxidation by wild-type P450(cam). Camphor is oxidized by wild-type P450(cam) exclusively to 5-exo-hydroxycamphor. If the gem dimethyl groups of (+)-alpha-pinene occupied similar positions to those found for camphor in the wild-type structure, (+)-cis-verbenol would be the dominant product. All P450(cam) enzymes studied gave (+)-cis-verbenol as the major product but with much reduced selectivity compared to camphor oxidation by the wild-type. (+)-Verbenone, (+)-myrtenol, and the (+)-alpha-pinene epoxides were among the minor products. The crystal structure of the Y96F/F87W/V247L mutant, the most selective of the P450(cam) mutants initially examined, was determined to provide further insight into P450(cam) substrate binding and catalysis. (+)-alpha-Pinene was bound in two orientations which were related by rotation of the molecule. One orientation was similar to that of camphor in the wild-type enzyme while the other was significantly different. Analysis of the enzyme/substrate contacts suggested rationalizations of the product distribution. In particular competition rather than cooperativity between the F87W and V247L mutations and substrate movement during catalysis were proposed to be major factors. The crystal structure lead to the introduction of the L244A mutation to increase the selectivity of pinene oxidation by further biasing the binding orientation toward that of camphor in the wild-type structure. The F87W/Y96F/L244A mutant gave 86% (+)-cis-verbenol and 5% (+)-verbenone. The Y96F/L244A/V247L mutant gave 55% (+)-cis-verbenol but interestingly also 32% (+)-verbenone, suggesting that it may be possible to engineer a P450(cam) mutant that could oxidize (+)-alpha-pinene directly to (+)-verbenone. Verbenol, verbenone, and myrtenol are naturally occurring plant fragrance and flavorings. The preparation of these compounds by selective enzymatic oxidation of (+)-alpha-pinene, which is readily available in large quantities, could have applications in synthesis. The results also show that the protein engineering of P450(cam) for high selectivity of substrate oxidation is more difficult than achieving high substrate turnover rates because of the subtle and dynamic nature of enzyme-substrate interactions.  相似文献   

8.
Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C−H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2O2 complex which would be more abundant in the peroxide-driven reactions.  相似文献   

9.
This study directly compares the active species of heme enzymes, so-called Compound I (Cpd I), across the heme-thiolate enzyme family. Thus, sixty-four different Cpd I structures are calculated by hybrid quantum mechanical/molecular mechanical (QM/MM) methods using four different cysteine-ligated heme enzymes (P450(cam), the mutant P450(cam)-L358P, CPO and NOS) with varying QM region sizes in two multiplicities each. The overall result is that these Cpd I species are similar to each other with regard to many characteristic features. Hence, using the more stable CPO Cpd I as a model for P450 Cpd I in experiments should be a reasonable approach. However, systematic differences were also observed, and it is shown that NOS stands out in most comparisons. By analyzing the electrical field generated by the enzyme on the QM region, one can see that (a) the protein exerts a large influence and modifies all the Cpd I species compared with the gas-phase situation and (b) in NOS this field is approximately planar to the heme plane, whereas it is approximately perpendicular in the other enzymes, explaining the deviating results on NOS. The calculations on the P450(cam) mutant L358P show that the effects of removing the hydrogen bond between the heme sulfur and L358 are small at the Cpd I stage. Finally, Mossbauer parameters are calculated for the different Cpd I species, enabling future comparisons with experiments. These results are discussed in the broader context of recent findings of Cpd I species that exhibit large variations in the electronic structure due to the presence of the substrate.  相似文献   

10.
Enzyme-based electron-transfer reactions involved in the cytochrome P450 monooxygenase system were investigated in nanostructural reverse micelles. A bacterial flavoprotein, putidaredoxin reductase (PdR), was activated and shown to be capable of catalyzing the electron transport from NADH to electron-carrier proteins such as cytochrome b5 (tCyt-b5) and putidaredoxin (Pdx) in reverse micelles. Ferric tCyt-b5 in reverse micelles was effectively converted to its ferrous form by the exogenous addition of separately prepared reverse micellar solution harboring PdR and NADH. The fact that direct interactions of macromolecular proteins should be possible in the reverse micellar system encouraged us to functionalize a multicomponent monooxygenase system composed of the bacterial cytochrome P450cam (P450cam), putidaredoxin (Pdx), and PdR in reverse micelles. The successful camphor hydroxylation reaction catalyzed by P450cam was significantly dependent on the coexistence of Pdx, PdR, and NADH but not H2O2, suggesting that the oxygen-transfer reactions proceeded via a "monooxygenation" mechanism. This is the first report of a multicomponent cytochrome P450 system exhibiting enzymatic activity in organic media.  相似文献   

11.
Summary Recent studies by Wackett and co-workers have shown that cytochrome P450cam is capable of reductively dehalogenating hexachloroethane at a significant rate, but that no appreciable dehalogenation of 1,1,1-trichloroethane is observed. A growing body of evidence indicates that differences in intrinsic reactivity can not completely explain this observation. We therefore explored the possible role of differences in preferred binding orientation and in active-site mobility. A detailed analysis of molecular dynamics trajectories with each of these substrates bound at the active site of P450cam is presented. While the dynamics and overall time-average structure calculated for the protein are similar in the two trajectories, the two substrates behave quite differently. The smaller substrate, 1,1,1-trichloroethane, is significantly more mobile than hexachloroethane and has a preferred orientation in which the substituted carbon is generally far from the heme iron. In contrast, for hexachloroethane, one of the chlorine atoms is nearly always in van der Waals contact with the heme iron, which should favor the initial electron transfer step.  相似文献   

12.
Density functional calculations were performed in response to the controversies regarding the identity of the oxidant species in cytochrome P450. The calculations were used to gauge the relative C-H hydroxylation reactivity of three potential oxidant species of the enzyme, the high-valent oxo-iron species Compound I (Cpd I), the ferric hydroperoxide Compound 0 (Cpd 0), and the ferric-hydrogen peroxide complex Fe(H(2)O(2)). The results for the hydroxylation of a radical probe substrate, 1, show the following trends: (a) Cpd I is the most reactive species; in its presence the other two reagents will be silent. (b) In the absence of Cpd I, substrate oxidation by Cpd 0 and Fe(H(2)O(2)) will take place via a stepwise mechanism that involves initial O-O homolysis followed by H-abstraction from 1. (c) Cpd 0 will undergo mostly porphyrin hydroxylation and only approximately 15% of substrate oxidation producing mostly the rearranged alcohol, 3 (Scheme 2). (d) Fe(H(2)O(2)) will generate mostly free hydrogen peroxide (uncoupling). A small fraction will perform substrate oxidation and lead mostly to 3. Reactivity probes for these reagents are kinetic isotope effect (KIE) and the product ratio of unrearranged to rearranged alcohols, [2/3]. Thus, for substrate oxidation by Cpd 0 or Fe(H(2)O(2)) KIE will be small, approximately 2, while Cpd I will have large KIE values. Typically both Cpd 0 and Fe(H(2)O(2)) will lead to a [2/3] ratio < 1, while Cpd I will lead to ratios > 1. In addition, the product isotope effect (KIE(2)/KIE(3) not equal 1) is expected from the reactivity of Cpd I.  相似文献   

13.
The soluble, catalytically self-sufficient cytochrome P450 BM3 from Bacillus megaterium is a good candidate as biocatalyst for the synthesis of drug metabolites. To this end, error-prone polymerase chain reaction (PCR) was used to generate a library of P450 BM3 mutants with novel activities toward drugs. The double mutant Asp251Gly/Gln307His (A2) with activities towards diclofenac, ibuprofen and tolbutamide was identified by screening with the alkali method. This is based on the detection of NADPH oxidation during enzymatic turnover on whole Escherichia coli cells heterologously expressing the P450 BM3 mutants in the presence of the target substrates. The three drugs screened are marker substrates of human liver cytochromes P450 belonging to the 2C subfamily. Interestingly the mutations Asp251Gly/Gln307His are located on the protein surface and they are not directly involved in substrate binding and turnover. Dissociation constants and K(M) values of mutant A2 for diclofenac, ibuprofen and tolbutamide are in the micromolar range. Catalysis leads to hydroxylations in specific positions, producing 4'-hydroxydiclofenac, 2-hydroxyibuprofen and 4-hydroxytolbutamide, respectively.  相似文献   

14.
A new model for the P450 enzyme carrying a SO(3)(-) ligand coordinated to iron(III) (complex 2) reversibly binds NO to yield the nitrosyl adduct. The rate constant for NO binding to 2 in toluene is of the same order of magnitude as that found for the nitrosylation of the native, substrate-bound form of P450(cam) (E.S-P450(cam)). Large and negative activation entropy and activation volume values for the binding of NO to complex 2 support a mechanism that is dominated by bond formation with concomitant iron spin change from S = (5)/(2) to S = 0, as proposed for the reaction between NO and E.S-P450(cam). In contrast, the dissociation of NO from 2(NO) was found to be several orders of magnitude faster than the corresponding reaction for the E.S-P450(cam)/NO system. In a coordinating solvent such as methanol, the alcohol coordinates to iron(III) of 2 at the distal position, generating a six-coordinate, high-spin species 5. The reaction of NO with 5 in methanol was found to be much slower in comparison to the nitrosylation reaction of 2 in toluene. This behavior can be explained in terms of a mechanism in which methanol must be displaced during Fe-NO bond formation. The thermodynamic and kinetic data for NO binding to the new model complexes of P450 (2 and 5) are discussed in reference to earlier results obtained for closely related nitrosylation reactions of cytochrome P450(cam) (in the presence and in the absence of the substrate) and a thiolate-ligated iron(III) model complex.  相似文献   

15.
Kinetic and mechanistic studies on the formation of an oxoiron(IV) porphyrin cation radical bearing a thiolate group as proximal ligand are reported. The SR complex, a functional enzyme mimic of P450, was oxidized in peroxo‐shunt reactions under different experimental conditions with variation of solvent, temperature, and identity and excess of oxidant in the presence of different organic substrates. Through the application of a low‐temperature rapid‐scan stopped‐flow technique, the reactive intermediates in the SR catalytic cycle, such as the initially formed SR acylperoxoiron(III) complex and the SR high‐valent iron(IV) porphyrin cation radical complex [( SR .+)FeIV?O], were successfully identified and kinetically characterized. The oxidation of the SR complex under catalytic conditions provided direct spectroscopic information on the reactivity of [( SR .+)FeIV?O] towards the oxidation of selected organic substrates. Because the catalytically active species is a synthetic oxoiron(IV) porphyrin cation radical bearing a thiolate proximal group, the effect of the strong electron donor ligand on the formation and reactivity/stability of the SR high‐valent iron species is addressed and discussed in the light of the reactivity pattern observed in substrate oxygenation reactions catalyzed by native P450 enzyme systems.  相似文献   

16.
Cytochrome P450 monooxygenase enzymes are versatile catalysts, which have been adapted for multiple applications in chemical synthesis. Mutation of a highly conserved active site threonine to a glutamate can convert these enzymes into peroxygenases that utilise hydrogen peroxide (H2O2). Here, we use the T252E-CYP199A4 variant to study peroxide-driven oxidation activity by using H2O2 and urea-hydrogen peroxide (UHP). We demonstrate that the T252E variant has a higher stability to H2O2 in the presence of substrate that can undergo carbon-hydrogen abstraction. This peroxygenase variant could efficiently catalyse O-demethylation and an enantioselective epoxidation reaction (94 % ee). Neither the monooxygenase nor peroxygenase pathways of the P450 demonstrated a significant kinetic isotope effect (KIE) for the oxidation of deuterated substrates. These new peroxygenase variants offer the possibility of simpler cytochrome P450 systems for selective oxidations. To demonstrate this, a light driven H2O2 generating system was used to support efficient product formation with this peroxygenase enzyme.  相似文献   

17.
Multiple oxidants have been implicated as playing a role in cytochrome P450-mediated oxidations. Herein, we report results on N-dealkylation, one of the most facile reactions mediated by P450 enzymes. We have employed the N-oxides of a series of para-substituted 13C2H2-labeled N,N-dimethylanilines to function as both substrates and surrogate oxygen atom donors for P450cam and P4502E1. Kinetic isotope effect profiles obtained using the N-oxide system were found to closely match the profiles produced using the complete NAD(P)H/NAD(P)-P450 reductase/O2 system. The results are consistent with oxidation occurring solely through an iron-oxene species.  相似文献   

18.
The iron(III) meso‐tetramesitylporphyrin complex is a good biomimetic to study the catalytic reactions of cytochrome P450. All of the three most discussed reactive intermediates concerning P450 catalysis (namely, Cpd 0, Cpd I, and Cpd II) can be selectively produced, identified, and stabilized for many minutes in solution at low temperature by choosing appropriate reaction conditions. In this way, their reactivity against various substrates was determined by utilizing low‐temperature rapid‐scan UV/Vis spectroscopy. Since all reactive intermediates are derived from a single model complex, the results of these kinetic measurements provide for the first time a full comparability of the determined rate constants for the three intermediates. The rate constants reveal a significant dependence of the reactivity on the type of reaction (e.g., oxygenation, hydrogen abstraction, or hydride transfer), which closely correlates with the chemical nature of Cpds 0, I, and II. The detailed knowledge of the reactivity of these intermediates provides a valuable tool to evaluate their particular role in biological systems.  相似文献   

19.
The haem monooxygenase cytochrome P450cam has been engineered to oxidise the gaseous alkanes butane and propane to butan-2-ol and propan-2-ol, respectively, by the use of bulky amino acid substitutions to reduce the volume of the substrate pocket and thus improve the enzyme-substrate fit: the F87W/Y96F/T101L/V247L mutant oxidizes butane with a turnover rate of 750 min-1 and 95% yield based on NADH consumed while the wild-type enzyme has an activity of 0.4 min-1 with 4% yield.  相似文献   

20.
Quantum mechanical/molecular mechanical (QM/MM) methods have been used in conjunction with density functional theory (DFT) and correlated ab initio methods to predict the electron paramagnetic resonance (EPR) and Mossbauer (MB) properties of Compound I in P450(cam). For calibration purposes, a small Fe(IV)-oxo complex [Fe(O)(NH(3))(4)(H(2)O)](2+) was studied. The (3)A(2) and (5)A(1) states (in C(4)(v)() symmetry) are found to be within 0.1-0.2 eV. The large zero-field splitting (ZFS) of the (FeO)(2+) unit in the (3)A(2) state arises from spin-orbit coupling with the low-lying quintet and singlet states. The intrinsic g-anisotropy is very small. The spectroscopic properties of the model complex [Fe(O)(TMC)(CH(3)CN)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are well reproduced by theory. In the model complexes [Fe(O)(TMP)(X)](+) (TMP = tetramesitylporphyrin, X = nothing or H(2)O) the computations again account for the observed spectroscopic properties and predict that the coupling of the (5)A(1) state of the (FeO)(2+) unit to the porphyrin radical leads to a low-lying sextet/quartet manifold approximately 12 kcal/mol above the quartet ground state. The calculations on cytochrome P450(cam), with and without the simulation of the protein environment by point charges, predict a small antiferromagnetic coupling (J approximately -13 to -16 cm(-)(1); H(HDvV) = - 2JS(A)S(B)) and a large ZFS > 15 cm(-)(1) (with E/D approximately 1/3) which will compete with the exchange coupling. This leads to three Kramers doublets of mixed multiplicity which are all populated at room temperature and may therefore contribute to the observed reactivity. The MB and ligand hyperfine couplings ((14)N, (1)H) are fairly sensitive to the protein environment which controls the spin density distribution between the porphyrin ring and the axial cysteinate ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号