首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

2.
Core‐cleavable star polymers were synthesized by the coupling of living anionic poly(alkyl methacrylate) arms with either dicumyl alcohol dimethacrylate (DCDMA) or 2,5‐dimethyl‐2,5‐hexanediol dimethacrylate (DHDMA). This synthetic methodology led to the formation of star polymers that exhibited high molecular weights and relatively narrow molecular weight distributions. The labile tertiary alkyl esters in the DCDMA and DHDMA star polymer cores were readily hydrolyzed under acidic conditions. High‐molecular‐weight star polymer cleavage led to well‐defined arm polymers with lower molecular weights. Hydrolysis was confirmed via 1H NMR spectroscopy and gel permeation chromatography. Thermogravimetric analysis (TGA) of the star polymers demonstrated that the DCDMA and DHDMA star polymer cores also thermally degraded in the absence of acid catalysts at 185 and 220 °C, respectively, and the core‐cleavage temperatures were independent of the arm polymer composition. The difference in the core‐degradation temperatures was attributed to the increased reactivity of the DCDMA‐derived cores. TGA/mass spectrometry detected the evolution of the diene byproduct of the core degradation and confirmed the proposed degradation mechanism. The DCDMA monomer exhibited a higher degradation rate than DHDMA under identical reaction conditions because of the additional resonance stabilization of the liberated byproduct, which made it a more responsive cleavable coupling monomer than DHDMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3083–3093, 2003  相似文献   

3.
Strategies to surface‐functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para‐dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half‐life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N‐hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier‐transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N‐hydroxysuccinimide esters on the surface of a PFPA‐functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio‐)functionalization of PPDO scaffolds.  相似文献   

4.
4‐Isopropenyl phenol ( 4‐IPP ) is a versatile dual functional intermediate that can be prepared readily from bisphenol‐A ( BPA ). Through etherification with epichlorohydrin to the phenolic group of 4‐IPP , it can be converted into 4‐isopropenyl phenyl glycidyl ether ( IPGE ). On further reaction with carbon dioxide in the presence of tetra‐n‐butyl ammonium bromide ( TBAB ) as the catalyst, IPGE was transformed into 4‐isopropenylphenoxy propylene carbonate ( IPPC ) in 90% yield. Cationic polymerization of IPPC with strong acid such as trifluoromethanesulfonic acid or boron trifluoride diethyl etherate as the catalyst at ?40 °C gave a linear poly(isopropenylphenoxy propylene carbonate), poly( IPPC ), with multicyclic carbonate groups substituted uniformly at the side‐chains of the polymer. The cyclic carbonate groups of poly( IPPC ) were further reacted with different aliphatic amines and diamines resulting in formation of polymers with hydroxy‐polyurethane on side‐chains. Syntheses, characterizations of poly( IPPC ) and its conversion into hydroxy‐polyurethane crosslinked polymers were presented. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 802–808  相似文献   

5.
Polymers that possess lower critical solution temperature behavior such as poly(2‐alkyl‐2‐oxazoline)s (PAOx) are interesting for their application as stimulus‐responsive materials, for example in the biomedical field. In this work, we discuss the scalable and controlled synthesis of a library of pH‐ and temperature‐sensitive 2‐n‐propyl‐2‐oxazoline P(nPropOx) based copolymers containing amine and carboxylic acid functionalized side chains by cationic ring opening polymerization and postpolymerization functionalization strategies. Using turbidimetry, we found that the cloud point temperature (CP) is strongly dependent on both the polymer concentration and the polymer charge (as a function of pH). Furthermore, we observed that the CP decreased with increasing salt concentration, whereas the CP increased linearly with increasing amount of carboxylic acid groups. Finally, turbidimetry studies in PBS‐buffer indicate that CPs of these polymers are close to body temperature at biologically relevant polymer concentrations, which demonstrates the potential of P(nPropOx) as stimulus‐responsive polymeric systems in, for example, drug delivery applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1573–1582  相似文献   

6.
New isoindigo and di(thienyl)ethylene‐containing π‐extended conjugated polymers with different branched side chains were synthesized to investigate their physical properties and device performance in thin‐film transistors and photovoltaic cells. 11‐Butyltricosane (S3) and 11‐heptyltricosane (S6) groups were used as side‐chain moieties tethered to isoindigo units. The linking groups between the polymer backbone and bifurcation point in the branched side chain differ in the two polymers (i.e., PIDTE‐S3 and PIDTE‐S6 ). The polymers bearing S6 side chains showed much better charge transport behavior than those with S3 side chains. Thermally annealed PIDTE‐S6 film exhibited an outstanding hole mobility of 4.07 cm2 V?1 s?1 under ambient conditions. Furthermore, bulk heterojunction organic photovoltaic cells made from a blend film of PIDTE‐S3 and (6,6)‐phenyl C61‐butyric acid methyl ester demonstrated promising device performance with a power conversion efficiency in the range of 4.9–5.0%. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1226–1234  相似文献   

7.
A new series of stable, processable, and chain end functionalizable sulfone‐derivatized phenylenevinylene‐based conjugated polymers (SFPVs) containing different donor type comonomers have been synthesized and characterized. The polymer main chains are consisted of a sulfone‐phenylene electron accepting unit coupled with an electron donating unit which is derived from one of the dialdehyde comonomers based on benzene, thiophene, and pyrrole (with or without alkoxy side chains). The optical energy gaps (Eg) of the new polymers (in solvent) are in a range of 1.9–2.3 eV, with the lowest energy gap obtained from the polymer containing pyrrole as the donor unit. By using a combination of strong donor unit (such as pyrrole) and a relatively weak but stable acceptor unit (sulfone‐substituted benzene), Eg of the conjugated polymers can be tailored to below 2 eV, while the vinylene bonds on the polymer main chain are still chemically stable to survive strong basic conditions as compared with the S,S‐dioxo‐thiophene‐based PTV polymers developed earlier for potential supra‐molecular block copolymer systems. The lowest energy gap P(Pyrrole‐SFPV) exhibited 10 times better photoelectric power conversion efficiency than P(TV‐SFPV). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Melt polycondensation approach is developed for new classes of reduction responsive disulfide containing functional polyesters based on l ‐cystine amino acid resources under solvent free process. l ‐Cystine was converted into multi‐functional ester‐urethane monomer and subjected to thermoselective transesterification at 120 °C with commercial diols in the presence of Ti(OBu)4 to produce polyesters with urethane side chains. The polymers were produced in moderate to high molecular weights and the polymers were found to be thermally stable up to 250 °C. The β‐sheet hydrogen bonding interaction among the side chain urethane unit facilitated the self‐assembly of the polyester into amyloid‐like fibrils. The deprotection of urethane unit into amine functionality modified the polymers into water soluble cationic polyester spherical nanoparticles. The reduction degradation of disulfide bond was studied using DTT as a reducing agent and the high molecular weight polymers chains were found be chopped into low molecular weight oligomers. The cytotoxicity of cationic disulfide nanoparticle was studied in MCF‐7 cells and they were found to be biocompatible and non‐toxic to cells upto 50 μg/mL. The custom designed reduction degradable and highly biocompatible disulfide polyesters from l ‐cystine are useful for futuristic biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2864–2875  相似文献   

9.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Poly(2‐vinylpyridine) (P2VP) containing functionalized end groups was synthesized using nitroxyl‐mediated radical polymerization with a hydroxy‐functionalized stable free radical. It was shown that P2VP could be synthesized with variable molar masses and low polydispersities. The transformation of the hydroxy groups to an acrylic ester led to the formation of macromonomers. A free‐radical copolymerization of these macromonomers with N‐isopropylacrylamide gave a graft copolymer with a poly(N‐ispopropylacrylamide) backbone and P2VP side chains. Polymers containing different amounts of the monomers were synthesized. It was possible to vary both the amount of P2VP side chains at a constant chain length of the macromonomer and the chain length at a nearly constant chain number. The behavior of the multifunctional macromolecules at different temperatures and pH values was investigated using dynamic light scattering and DSC. The macromolecules were found to retain the specific properties of the homopolymers. The hydrodynamic radii of the synthesized graft copolymers were both dependent on the temperature and pH value. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3797–3804, 2001  相似文献   

11.
The synthesis of a series of novel, water‐soluble poly(organophosphazenes) prepared via living cationic polymerization is presented. The degradation profiles of the polyphosphazenes prepared are analyzed by GPC, 31P NMR spectroscopy, and UV–Vis spectroscopy in aqueous media and show tunable degradation rates ranging from days to months, adjusted by subtle changes to the chemical structure of the polyphosphazene. Furthermore, it is observed that these polymers demonstrate a pH‐promoted hydrolytic degradation behavior, with a remarkably faster rate of degradation at lower pH values. These degradable, water soluble polymers with controlled molecular weights and structures could be of significant interest for use in aqueous biomedical applications, such as polymer therapeutics, in which biological clearance is a requirement and in this context cell viability tests are described which show the non‐toxic nature of the polymers as well as their degradation intermediates and products. © 2013 The Authors Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 287–294  相似文献   

12.
A series of 10 polythiophene derivatives is reported, in which each polymer has a different percentage of carboxylic acid‐bearing repeat units. The properties of these polymers are explored under acidic conditions, where the carboxylic acid moieties remain neutral, and under basic conditions, where the carboxylic acid units become anionic carboxylates. The properties that are examined for both solutions and films include UV–vis absorption spectroscopy, photoluminescence spectroscopy, and red‐edge optical band gaps. All the properties studied are strongly dependent both on protonation state and percentage of carboxylic acid/carboxylate side chains along the polymer backbone. The anionic form of each polythiophene derivative was also used in layer‐by‐layer film deposition with a cationic phosphonium polyelectrolyte. The film growth process was studied by spectroscopic techniques to assess the influence of side‐chain composition on the film growth and optical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

13.
A new series of donor–acceptor co‐polymers based on benzodithiophene and quinoxaline with various side chains have been developed for polymer solar cells. The effect of the degree of branching and dimensionality of the side chains were systematically investigated on the thermal stability, optical absorption, energy levels, molecular packing, and photovoltaic performance of the resulting co‐polymers. The results indicated that the linear and 2D conjugated side chains improved the thermal stabilities and optical absorptions. The introduction of alkylthienyl side chains could efficiently lower the energy levels compared with the alkoxyl‐substituted analogues, and the branched alkoxyl side chains could deepen the HOMO levels relative to the linear alkoxyl chains. The branched alkoxyl groups induced better lamellar‐like ordering, but poorer face‐to‐face packing behavior. The 2D conjugated side chains had a negative influence on the crystalline properties of the co‐polymers. The performance of the devices indicated that the branched alkoxyl side chains improved the Voc, but decreased the Jsc and fill factor (FF). However, the 2D conjugated side chains would increase the Voc, Jsc, and FF simultaneously. For the first time, our work provides insight into molecular design strategies through side‐chain engineering to achieve efficient polymer solar cells by considering both the degree of branching and dimensionality.  相似文献   

14.
Because of its high conductivity when acid doped, polyaniline is known as a synthetic metal and is used in a wide range of applications, such as supercapacitors, biosensors, electrochromic devices, or solar and fuel cells. Emeraldine is the partly oxidized, stable form of polyaniline, consisting of alternating diaminobenzenoid and iminoquinoid segments. When acidified, the nitrogen atoms of emeraldine become protonated. Due to electrostatic repulsion between positive charges, the polarity and morphology of emeraldine chains presumably change; however, the protonation effects on emeraldine have not yet been clarified. Thus, we investigated these changes by reversed‐phase capillary liquid chromatography using a linear solvation energy relationship approach to assess differences in dominant retention interactions under a significantly varied mobile phase pH. We observed that hydrophobicity dominates the intermolecular interactions under both acidic and alkaline eluent conditions, albeit to different extents. Therefore, by tuning the mobile phase pH, we can even modulate the retention of neutral hydrophobic solutes, such as aromatic hydrocarbons, because the pH‐dependent charge and structure of polymer chains of the emeraldine‐coated silica stationary phase show a mixed‐mode separation mechanism.  相似文献   

15.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

16.
Selective polymer wrapping is a promising approach to obtain high‐chiral‐purity single‐walled carbon nanotubes (SWCNTs) needed in technical applications and scientific studies. We showed that among three fluorene‐based polymers with different side‐chain lengths and backbones, poly[(9,9‐dihexylfluorenyl‐2,7‐diyl)‐co‐(9,10‐anthracene)] (PFH‐A) can selectively extract SWCNTs synthesized from the CoSO4/SiO2 catalyst, which results in enrichment of 78.3 % (9,8) and 12.2 % (9,7) nanotubes among all semiconducting species. These high‐chiral‐purity SWCNTs may find potential applications in electronics, optoelectronics, and photovoltaics. Furthermore, molecular dynamics simulations suggest that the extraction selectivity of PFH‐A relates to the bending and alignment of its alkyl chains and the twisting of its two aromatic backbone units (biphenyl and anthracene) relative to SWCNTs. The strong π–π interaction between polymers and SWCNTs would increase the extraction yield, but it is not beneficial for chiral selectivity. Our findings suggest that the matching between the curvature of SWCNTs and the flexibility of the polymer side chains and the aromatic backbone units is essential in designing novel polymers for selective extraction of (n,m) species.  相似文献   

17.
pH‐Responsive polymers have great potential in biomedical applications, including the selective delivery of preloaded drugs to tissues with low pH values. These polymers usually contain acid‐labile linkages such as esters and acetals/ketals. However, these linkages are only mildly pH‐responsive with relatively long half‐lives (t1/2). Orthoester linkages are more acid‐labile, but current methods suffer from synthetic challenges and are limited to the availability of monomers. To address these limitations, a sugar poly(orthoester) was synthesized as a highly pH‐responsive polymer. The synthesis was achieved by using 2,3,4‐tri‐O‐acetyl‐α‐D ‐glucopyranosyl bromide as a difunctional AB monomer and tetra‐n‐butylammonium iodide (TBAI) as an effective promoter. Under optimal conditions, polymers with molecular weights of 6.9 kDa were synthesized in a polycondensation manner. The synthesized glucose poly(orthoester), wherein all sugar units were connected through orthoester linkages, was highly pH‐responsive with a half‐life of 0.9, 0.6, and 0.2 hours at pH 6, 5, and 4, respectively.  相似文献   

18.
The degradation pattern of a series of low band gap PCPDTBT polymers under thermal stress is investigated by in situ UV–vis and FT‐IR techniques combined with thermal degradation analysis. Thermogravimetric analysis is used to predetermine the decomposition intervals, revealing that thermolysis occurs in two stages. TG‐TD‐GC/MS shows that loss of the alkyl side chains predominantly happens within the first temperature regime and degradation of the polymer backbone occurs thereafter. UV–vis spectroscopy is used to monitor the evolution of the optical properties upon heating, reflecting the thermal stability of the conjugated backbone, whereas FT‐IR spectroscopy is applied to evaluate the chemical changes under thermal stress, with an emphasis on the polymer periphery. The influence of the side chains and possible defects, dependent on the synthesis protocol applied, on the thermal stability of the final polymers is discussed and is related to the application of said materials in organic photovoltaics. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4912–4922  相似文献   

19.
A new class of amphiphilic polymers carrying two pendant docosyl (C22) chains, located at periodic intervals that are separated by PEG chains of varying lengths, was synthesized via a simple melt‐transesterification polymerization, using dimethyl, 2,5‐didocosyloxyterephthalate as one of the monomers. DSC, variable temperature FT‐IR, and WAXS studies demonstrated that immiscibility between the pendant docosyl units and the backbone PEG segments drives their self‐segregation; this results in the crystallization of the pendant docosyl segments and the generation of a lamellar morphology with the alkyl segments and the PEG chains occupying alternate layers. Based on the study of model criss‐cross amphiphiles that resemble the polymer repeat unit, it is postulated that the chains reconfigure such that both the docosyl chains fold to one side of the terephthalate unit while the PEG segments form a loop on the other side; these chains then organize in a bilayer to form the lamellar structure. The simplicity of the synthesis and the rather unique properties of these polymers suggests that such a design could be translated to develop other interesting functional materials that could exploit the immiscibility‐driven microphase separation for the generation of sub‐10 nm domains; these could have potential applications, such as in membranes, solid polymer electrolyte formulations, and so forth. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1554–1563  相似文献   

20.
Optically tunable field‐effect transistors (FETs) with near infra‐red (NIR) light show promising applications in various areas. Now, arylazopyrazole groups are incorporated in the side chains of a semiconducting donor–acceptor (D‐A) polymer. The cis–trans interconversion of the arylazopyrazole can be controlled by 980 nm and 808 nm NIR light irradiation, by utilizing NaYF4:Yb,Tm upconversion nanoparticles and the photothermal effect of conjugated D‐A polymers, respectively. This reversible transformation affects the interchain packing of the polymer thin film, which in turn reversibly tunes the semiconducting properties of the FETs by the successive 980 nm and 808 nm light irradiation. The resultant FETs display fast response to NIR light, good resistance to photofatigue, and stability in storage for up to 120 days. These unique features will be useful in future memory and bioelectronic wearable devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号