首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Although highly useful in supramolecular chemistry, pillararenes lack a fluorophore in their skeleton. Here we present BowtieArene, a novel fluorescent dual macrocycle, featuring a central tetraphenylethylene‐derived fluorophore and two pillar‐like, pentagon‐shaped cavities which are comparable to pillar[5]arene. This concisely prepared, figure‐of‐eight molecule exhibits vapor absorption and host–guest capabilities, as well as intriguing switchable fluorescence. The fluorochromism of BowtieArene can be triggered by multiple external stimuli including solvent, vapor, and mechanical force, with excellent reversibility and stability. Experimental and theoretical evidence indicate that the fluorochromism should be closely related to molecular packing.  相似文献   

2.
By simple ligand exchange of the cationic transition‐metal complexes [(Cp*)M(acetone)3](OTf)2 (Cp*=pentamethylcyclopentadienyl and M=Ir or Rh) with pillar[5]arene, mono‐ and polynuclear pillar[5]arenes, a new class of metalated host molecules, is prepared. Single‐crystal X‐ray analysis shows that the charged transition‐metal cations are directly bound to the outer π‐surface of aromatic rings of pillar[5]arene. One of the triflate anions is deeply embedded within the cavity of the trinuclear pillar[5]arenes, which is different to the host–guest behavior of most pillar[5]arenes. DFT calculation of the electrostatic potential revealed that the metalated pillar[5]arenes featured an electron‐deficient cavity due to the presence of the electron‐withdrawing transition metals, thus allowing encapsulation of electron‐rich guests mainly driven by anion–π interactions.  相似文献   

3.
A heterotritopic copillar[5]arene monomer by introducing effective neutral guest moieties (methylene chains end‐capped with cyano and triazole groups) to a pillar[5]arene macrocycle is prepared. This well‐designed AB2‐type copillar[5]arene contains strong host–guest recognition motifs that are connected with relatively flexible and long linkers, thus efficiently assembles to form supramole­cular hyperbranched polymer (SHP) in chloroform solution, which is characterized by various techniques including 1H NMR, DOSY, viscosity, DLS, and TEM. Particularly, this supramolecular polymer can be effectively depolymerized by adding a competitive butanedinitrile guest.

  相似文献   


4.
《化学:亚洲杂志》2017,12(18):2354-2358
Herein, we successfully develop a novel route to give rise to polarity for the pillararenes by the introduction of oxygenated functionalities into pillar[5]arene to stereoselectively synthesize the pillar[4]arene[1]cis ‐diepoxy‐p ‐dione. Its host–guest properties with different dinitrile molecules were also investigated and characterized by NMR and X‐ray crystallography.  相似文献   

5.
Abstract

Recognition ability of both cationic pillar[5]arene and calix[4]arene has been studied in aqueous media. Anion complexation can be evaluated from their ability to complex their counterions as well as an added external organic anion. DOSY NMR experiments and fluorescence quenching show that pillararenes have a larger ability for including their own counterions than calixarenes irrespective of the anion (tetrafluoroborate or chloride or bromide) and the structure of the cationic moiety (trimethylammonium or methylimidazolium). Counterion complexation shows a picture where four to five positive charges of the pillar[5]arene are neutralised, meanwhile only one positive charge of the calixarene is neutralised for a 1 mM solution of the macrocycle. Irrespective of the smaller net positive charge in the pillar[5]arene, its binding ability for organic anions (toluenesulfonate or hydroxybenzoate) is larger than for calix[4]arene allowing a better accommodation of the guest in its cavity. The larger separation between the cationic groups of the receptor and its electron-rich aromatic region improves the anion recognition ability for pillar[5]arene.  相似文献   

6.
We present a simple procedure for the synthesis of quasi‐spherical Au nanoparticles in a wide size range mediated by macrocyclic host molecules, ammonium pillar[5]arene (AP[5]A). The strategy is based on a seeded growth process in which the water‐soluble pillar[5]arene undergoes complexation of the Au salt through the ammonium groups, thereby avoiding Au nucleation, while acting as a stabilizer. The presence of the pillar[5]arene onto the Au nanoparticle particle surface is demonstrated by surface‐enhanced Raman scattering (SERS) spectroscopy, and the most probable conformation of the molecule when adsorbed on the Au nanoparticles surface is suggested on the basis of theoretical calculations. In addition, we analyze the host–guest interactions of the AP[5]A with 2‐naphthoic acid (2NA) by using 1H NMR spectroscopy and the results are compared with theoretical calculations. Finally, the promising synergetic effects of combining supramolecular chemistry and metal nanoparticles are demonstrated through SERS detection in water of 2NA and a polycyclic aromatic hydrocarbon, pyrene (PYR).  相似文献   

7.
Herein, we report the synthesis of a new class of functional silver nanoclusters (AgNCs) capped with pillar[5]arene (P5)‐based host ligands. These NCs are readily prepared through direct synthesis or ligand exchange synthesis and are stable at room temperature for over 4 months. The pillar[5]arene‐stabilized NCs (Ag29(LA‐P5)12(TPP)2) endorse reversible host–guest interactions with neutral alkylamines and cationic quaternary ammonium guests. This results in the formation of spherical assemblies with unparalleled changes in their optical properties including an astonishing circa 2000‐fold luminescence enhancement. This is the highest luminescence enhancement ratio reported so far for such atomically precise NCs. Our synthetic protocol paves the way for the preparation of a new generation of metal nanoclusters protected by macrocyclic ligands with molecular recognition and selectivity toward specific guests.  相似文献   

8.
Liquid quantum dots (QDs) have been used as a fluorescent films sensor. Constructing a macroscopic, responsive, liquid QD system for lysine (Lys) is a challenging task. To achieve a selective macroscopic response towards Lys, herein we present a new strategy for integrating host–guest chemistry into a liquid QD system. Water‐soluble pillar[5]arene WP5 was designed and synthesized as a host. WP5 was introduced onto the surface of PEG1810‐modified QDs by host–guest interactions to obtain liquid WP5‐1810‐QDs. The interaction between WP5 and Lys is stronger than that between WP5 and PEG‐1810, causing WP5 to be released from the 1810‐QDs surface in the presence of Lys, resulting in macroscopic fluorescence quenching. This smart material shows promise in amino acid sensing and separation.  相似文献   

9.
Transformation of a methylene group of the pillar[5]arene scaffold into a ketone has been achieved by treatment with N‐bromosuccinimide followed by hydrolysis of the bromide intermediate and oxidation of the resulting secondary benzylic alcohol with BaMnO4. Condensation of the resulting macrocycle including a ketone function with p‐toluenesulfonyl hydrazide followed by reaction of the corresponding tosylhydrazone with C60 under modified Bamford–Stevens conditions gave a fulleropillar[5]arene derivative. This building block has been used to prepare a rotaxane. The resulting molecule combining the fullerene‐functionalized macrocycle with an axle bearing a porphyrin stopper is a photoactive molecular device in which the porphyrin emission is efficiently quenched by the fullerene moiety.  相似文献   

10.
Activated perethylated pillar[5]arene crystals show an unexpected alkane‐shape‐ and ‐length‐selective gate‐opening behavior. Activated crystals were obtained upon removing solvents from perethylated pillar[5]arene crystals by heating. The activated crystals could quantitatively take up n‐alkanes with carbon chains containing more than five carbon atoms as a consequence of their gate‐opening pressure. As the chain length of the n‐alkanes increased, the gate pressure decreased. A transformation into a herringbone structure was induced when n‐hexane was used as a guest. By contrast, cyclic and branched alkanes were not taken up and could not induce a crystal transformation because they were too large to fit in the cavities of the pillar[5]arene. Alkane‐shape‐selective molecular recognition of pillar[5]arenes in the solution state was translated into the vapor/crystal state.  相似文献   

11.
A pillar[5]arene pendant polymer (Poly‐P[5]A) is synthesized via ROMP using Grubb's first‐generation catalyst. GPC analysis of the polymer suggested ~30 pendant pillar[5]arene units in the polymer. Supramolecular polypseudorotaxane assembly is constructed by intermolecularly crosslinking pendant pillar[5]arene units using a bispyridinium guest via host–guest complexation. Formation of the polypseudorotaxane assembly is characterized by 1D/2D NMR techniques and DLS analysis. Moreover, anion‐responsiveness of the polypseudorotaxane assembly is demonstrated by 1H NMR spectroscopic analysis using chloride anion as external stimulus. Scanning electron microscopic analysis of the poly‐P[5]A showed breath‐figure assembly and upon crosslinking with G.2PF6 the polymer self‐assemble to give a supramolecular polymer network. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1508–1515  相似文献   

12.
Tiara[5]arenes (T[5]s), a new class of five‐fold symmetric oligophenolic macrocycles that are not accessible from the addition of formaldehyde to phenol, were synthesized for the first time. These pillar[5]arene‐derived structures display both unique conformational freedom, differing from that of pillararenes, with a rich blend of solid‐state conformations and excellent host–guest interactions in solution. Finally we show how this novel macrocyclic scaffold can be functionalized in a variety of ways and used as functional crystalline materials to distinguish uniquely between benzene and cyclohexane.  相似文献   

13.
New liquid‐crystalline pillar[5]arene derivatives have been prepared by grafting first‐generation Percec‐type poly(benzylether) dendrons onto the macrocyclic scaffold. The molecules adopt a disc‐shaped structure perfectly suited for self‐organization into a columnar liquid‐crystalline phase. In this way, the pillar[5]arene cores are piled up, thus forming a nanotubular wire encased within a shell of peripheral dendrons. The capability of pillar[5]arenes to form inclusion complexes has been also exploited. Specifically, detailed binding studies have been carried out in solution with 1,6‐dicyanohexane as the guest. Inclusion complexes have also been prepared in the solid state. Supramolecular organization into the Colh mesophase has been deduced from X‐ray diffraction data and found to be similar to that observed within the crystal lattice of a model inclusion complex prepared from 1,4‐dimethoxypillar[5]arene and 1,6‐dicyanohexane.  相似文献   

14.
The reactions of phosphorus(III) chloride and 2-chloro-1,3,2-dioxaphospholane with monohydroxypillar[5]arene afforded for the first time the corresponding PH-phosphonates. It was found that the newly formed P–O(Ar) bond is characterized by considerably reduced reactivity, which was rationalized by essential shielding of the phosphorus atom by the pillar[5]arene macrocycle. The pillar[5]arene scaffold stabilizes the highly reactive PIII–Cl fragment, so that the formation of macrocyclic dichlorophosphite can be detected under normal conditions.  相似文献   

15.
Macrocycles are an important player in supramolecular chemistry. In 2008, a new class of macrocycles, “pillar[n]arenes”, were first discovered. Research efforts in the area of pillar[n]arenes have elucidated key properties, such as their shape, reaction mechanism, host–guest properties, and their versatile functionality, which has contributed to the development of pillar[n]arene chemistry and their applications to various fields. This Minireview describes how pillar[n]arene‐based supramolecular assemblies can be applied to supramolecular gel formation, reactions, light‐harvesting systems, drug‐delivery systems, biochemical applications, separation and storage materials, and surface chemistry.  相似文献   

16.
A facile synthesis of gold nanoparticles (AuNPs) covered with a multidentate macrocycle, carboxylated pillar[5]arene ( CP ), via a one‐pot hydrothermal process is reported. The resulting AuNPs are highly stable against salts and pH variations, while their traditional counterparts are not stable at the same conditions. For the stabilization, multiple carboxylate groups of CP might contribute to electrostatic or steric stabilization. In addition, we found that CP ‐coated AuNPs exhibit greater peroxidase‐like activity than citrate‐stabilized AuNPs in the presence of silver cations. The system presented herein would provide a new scheme to fabricate unique sensory systems in combination with enzymes, which can bind to the pocket of CP .  相似文献   

17.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

18.
The study of an enantiopure bicyclic pillar[5]arene‐based molecular universal joint (MUJ) by single‐crystal X‐ray diffraction allowed for the first time the unequivocal assignment of the absolute configuration of a planar chiral pillar[5]arene by circular dichroism spectroscopy. Crucially, the absolute configuration of the MUJ was switched reversibly by temperature, with an accompanying sign inversion of the anisotropy factor that varied by as much as 0.03, which is the largest value ever reported. Mechanistically, the reversible chirality switching of the MUJ is driven by the threading/dethreading motion of the fused ring and hence is dependent on both the size and nature of the ring and the solvent employed, reflecting the critical balance between the self‐complexation of the ring by pillar[5]arene, the solvation to the excluded ring, and the inclusion of solvent molecules in the cavity.  相似文献   

19.
The self‐inclusion behavior of monoester copillar[5]arenes depends on the position of the ester group, which causes different guest selectivities. Monoester copillar[5]arenes bearing an acetate chain can form stable self‐inclusion complexes in low‐ and high‐concentration solution and exhibit high guest selectivity. However, a monoester copillar[5]arene bearing a butyrate chain can not form a self‐inclusion complex and exhibits low guest selectivity. Thus, a new class of stable self‐inclusion complexes of copillar[5]arenes was explored to improve the selectivity of molecular recognition.  相似文献   

20.
《中国化学》2018,36(1):59-62
A novel host−guest recognition motif based on a water‐soluble pillar[7]arene ( WP7 ) and a 2,7‐diazapyrenium salt ( DMDAP ) was prepared. According to the integrated results of 1H NMR, 2D NOESY, UV–vis spectroscopy and fluorescence titration experiments, we demonstrated that the molecular recognition of WP7 to DMDAP in water not only has high association constant but also has pH‐responsiveness. Subsequently, we took advantage of this molecular recognition motif to fabricate a supra‐amphiphile based on WP7 and an amphiphilic 2,7‐diazapyrenium derivative DAPAC . Its controllable self‐assembly in water was also investigated by means of TEM and DLS techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号