首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Knowing how the contact geometry influences the conductance of a molecular wire junction requires both a precise determination of the molecule/metallic-electrode interface structure and an evaluation of the conductance for different contact geometries with a fair accuracy. With a greatly improved method to solve the Lippmann-Schwinger equation, we are able to include at least one atomic layer of each electrode into the extended molecule. The artificial effect of the jellium model used for the electrodes is therefore significantly reduced. Our first-principles calculations on the transport properties of a single benzene dithiolate molecule sandwiched between Au(111) surfaces show that the transmission of the bridge site contact, which is the most stable adsorption configuration in equilibrium, displays different features from those of other configurations, and that the inclusion of the surface layers of Au electrodes into the extended molecule shifts and broadens the transmission peaks due to a stronger and more realistic S-Au bonding. We discuss the geometry dependence of the transport properties by analyzing the density of states of the molecular orbitals.  相似文献   

2.
Bridging the difference in atomic structure between experiments and theoretical calculations and exploring quantum confinement effects in thin electrodes (leads) are both important issues in molecular electronics. To address these issues, we report here, by using Au-benzenedithiol-Au as a model system, systematic investigations of different models for the leads and the lead-molecule contacts: leads with different cross sections, leads consisting of infinite surfaces, and surface leads with a local nanowire or atomic chain of different lengths. The method adopted is a nonequilibrium Green's-function approach combined with density-functional theory calculations for the electronic structure and transport, in which the leads and molecule are treated on the same footing. It is shown that leads with a small cross section will lead to large oscillations in the transmission function T(E), which depend significantly on the lead structure (orientation) because of quantum waveguide effects. This oscillation slowly decays as the lead width increases, with the average approaching the limit given by infinite surface leads. Local nanowire structures around the contacts induce moderate fluctuations in T(E), while a Au atomic chain (including a single Au apex atom) at each contact leads to a significant conductance resonance.  相似文献   

3.
Understanding electron transport through a single molecule bridging between metal electrodes is a central issue in the field of molecular electronics. This review covers the fabrication and electron‐transport properties of single π‐conjugated molecule junctions, which include benzene, fullerene, and π‐stacked molecules. The metal/molecule interface plays a decisive role in determining the stability and conductivity of single‐molecule junctions. The effect of the metal–molecule contact on the conductance of the single π‐conjugated molecule junction is reviewed. The characterization of the single benzene molecule junction is also discussed using inelastic electron tunneling spectroscopy and shot noise. Finally, electron transport through the π‐stacked system using π‐stacked aromatic molecules enclosed within self‐assembled coordination cages is reviewed. The electron transport in the π‐stacked systems is found to be efficient at the single‐molecule level, thus providing insight into the design of conductive materials.  相似文献   

4.
Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results show that both the remaining H atom at the end of the DTB molecule and the increased S-Au surface distance will decrease the electronic transport significantly. The applied bias would change the symmetry of the system electronic structure. Our result was qualitatively consistent with the experiment, but there existed a gap of three orders of magnitude, and this was attributed to the different coupling geometry between the theoretical work and the experiment.  相似文献   

5.
This work demonstrates a highly specific and selective assembly of multisegmented nanowires on prepatterned gold electrodes using DNA hybridization. Multisegmented Au/Pd/Au nanowires were synthesized using template‐directed electrodeposition. Two complementary single‐stranded DNAs modified with thiol tags adsorb on gold electrodes and gold segments of nanowires, and enable the nanowires to assemble across electrodes. The assembled nanowires show ohmic contact with minimum contact resistance. Using these nanowires, the temperature dependent electrical resistance and the sensing performance toward hydrogen were investigated. The temperature coefficient of resistance of nanowires was lower than bulk polycrystalline counterpart, because of higher electron scattering at the surface and grain boundaries of nanowires. The nanowires were sensitive toward hydrogen gas at room temperature with a detection limit of 0.5%.  相似文献   

6.
Adsorption of 5‐fluorouracil (5‐FU) and 2,4‐dithio‐5‐fluorouracil (2,4‐DT‐5‐FU) on Au(111) surface at low coverage is studied by using periodic‐slab‐density functional theory calculation. Isolated 5‐FU molecule adsorbs preferentially at bridge site in a vertical configuration via N? H group by forming the N? H···Au nonconventional H‐bond. The formation of the anchor Au? O bond is not observed. Substitution of oxygen atoms of 5‐FU with sulfur strongly influences the nature of adsorption and leads to the Au? S anchor bond and the N? H···Au nonconventional H‐bond of single 2,4‐DT‐5‐FU molecule on Au(111) surface. The adsorption site and orientation of 2,4‐DT‐5‐FU molecule on the surface are similar to those of 5‐FU. The metal–molecule coupling effects at asymmetric Au/S(N? H)S/mol/C? H/Au and Au/N? H/mol/O/Au transport junctions and symmetric Au/S(N? H)S/mol/mol/S(N? H)S/Au and Au/O/mol/mol/O/Au transport junctions are also investigated. The electronic structure is analyzed in detail, and the obtained results are used for illustrating the electron transmission in metal–molecule–metal systems. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
Extended pi-conjugated molecules are interesting materials that have been studied theoretically and experimentally with applications to conducting nanowire, memory, and diode in mind. Chemical understanding of electron transport properties in molecular junctions, in which two electrodes have weak contact with a pi-conjugated molecule, is presented in terms of the orbital concept. The phase and amplitude of the HOMO and LUMO of pi-conjugated molecules determine essential properties of the electron transport in them. The derived rule allows us to predict single molecules' essential transport properties, which significantly depend on the type of connection between a molecule and electrodes. Qualitative predictions based on frontier orbital analysis about the site-dependent electron transport in naphthalene, phenanthrene, and anthracene are compared with density functional theory calculations for the molecular junctions of their dithiolate derivatives, in which two gold electrodes have strong contact with a molecule through two Au-S bonds.  相似文献   

8.
Soft X‐ray emission (XE), absorption (XA), and resonant inelastic scattering (RIXS) experiments have been conducted at the nitrogen K‐edge of urea and its derivatives in aqueous solution and were compared with density functional theory and time‐dependent density functional theory calculations. This comprehensive study provides detailed information on the occupied and unoccupied molecular orbitals of urea, thiourea, acetamide, dimethylurea, and biuret at valence levels. By identifying the electronic transitions that contribute to the experimental spectral features, the energy gap between the highest occupied and the lowest unoccupied molecular orbital of each molecule is determined. Moreover, a theoretical approach is introduced to simulate resonant inelastic X‐ray scattering spectra by adding an extra electron to the lowest unoccupied molecular orbital, thereby mimicking the real initial state of the core‐electron absorption before the subsequent relaxation process.  相似文献   

9.
We report solid‐state 1H nuclear magnetic resonance (NMR) spin‐lattice relaxation experiments, X‐ray diffractometry, field‐emission scanning electron microscopy, and both single‐molecule and cluster ab initio electronic structure calculations on 1‐methoxyphenanthrene ( 1 ) and 3‐methoxyphenanthrene ( 2 ) to investigate the rotation of the methoxy groups and their constituent methyl groups. The electronic structure calculations and the 1H NMR relaxation measurements can be used together to determine barriers for the rotation of a methoxy group and its constituent methyl group and to develop models for the two coupled motions.  相似文献   

10.
To improve the electron collection, electron lifetime, and light‐harvesting efficiency of dye‐sensitized solar cells simultaneously, Au nanoflowers were prepared and used to cover the entire TiO2 film. Deposition of Au nanoflowers around the TiO2 film formed a light‐scattering “box” that covered the entire TiO2 film. Compared with a light‐scattering layer that only covers the top surface of TiO2, the Au‐nanoflowers box exhibited better light‐harvesting efficiency due to omnidirectional light scattering, faster electron transport (attributed to the formation of electron channels between the metallic Au nanoflowers and the electron‐collection electrode), and slower charge recombination. As a consequence, the short‐circuit photocurrent and open‐circuit photovoltage were both enhanced significantly, which improved the power conversion efficiency from 8.12 to 10.91 % (34 %) when an Au‐nanoflowers box was wrapped around the photoanode.  相似文献   

11.
The molecular and electronic structures and electron transport characteristics of a Co complex are investigated using first principles calculations. The Co complex belongs to the D(2d) point group, and its two ligands are perpendicular to each other. The central atom Co forms a distorted octahedron with six donor N atoms. In a low oxidation state, the bond length between Co and pyrrole nitrogen, 1.849 A, is much shorter than the distance between Co and pyridine nitrogen, 2.168 A, while, in a high oxidation state, the bond length differences between Co and pyrrole nitrogen, 1.814 A, and between Co and pyridine nitrogen, 1.990 A, are not as large as those in the Co2+ complex. The HOMO energy of the low oxidation state is very close to the Fermi level of bulk Au, allowing hole creation in the molecule. On the other hand, the LUMO energy of the high oxidation state is close to the Au Fermi level, allowing a low barrier for electron injection from the Au cathode to the molecule. These structural characteristics make the Co complex a good hole-conduction molecule. The density of states, transmission probability, and I-V characteristics are evaluated using the Green function approach.  相似文献   

12.
13.
14.
Based on the first-principles computational method and the elastic scattering Green's func-tion theory, we have investigated the electronic transport properties of different oligothio-phene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.  相似文献   

15.
The electronic transport properties of a 4,4'-bipyridine molecule sandwiched between two Au(111) surfaces are studied with a fully self-consistent nonequilibrium Green's-function method combined with the density-functional theory. The 4,4'-bipyridine molecule prefers to adsorb near the hollow site of the Au(111) surface and distorts slightly. The modifications on the electronic structure of the molecule due to the presence of the electrodes are described by the renormalized molecular orbitals, which correspond well to the calculated transmission peaks. The average Fermi level lies close to the lowest unoccupied renormalized molecular orbital, which determines the electronic transport property of the molecular junction under a small bias voltage. The total transmission is contributed by a single channel. The transmission peaks shift with the applied bias voltage, and this behavior depends on the spatial distribution of the renormalized molecular orbitals and the voltage drop along the molecular junction. The shape of the calculated conductance curve of the equilibrium geometric configuration reproduces the main feature of the experimental results, but the value is larger than the measured data by about 6 times. Good agreement with the experimental measurements can be obtained by elongating the molecular junction. The electronic transport behaviors depend strongly on the interface configuration.  相似文献   

16.
We study electron transport characteristics through a single phenalenyl molecule attached with two nonsuperconducting electrodes by the use of Green's function technique. Parametric calculations are given based on the tight‐binding model to characterize the electron transport through such molecular bridge system. It is observed that the electron transport properties are significantly influenced by (a) the interference effect and (b) the molecule‐to‐electrodes coupling strength. In this context we also describe the noise power of the current fluctuations that provides an important information about the electron correlation, which is obtained by calculating the Fano factor (F). The knowledge of this current fluctuations gives a key idea for fabrication of efficient molecular devices. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
We report that the single‐molecule junction conductance of thiol‐terminated silanes with Ag electrodes are higher than the conductance of those formed with Au electrodes. These results are in contrast to the trends in the metal work function Φ(Ag)<Φ(Au). As such, a better alignment of the Au Fermi level to the molecular orbital of silane that mediates charge transport would be expected. This conductance trend is reversed when we replace the thiols with amines, highlighting the impact of metal–S covalent and metal–NH2 dative bonds in controlling the molecular conductance. Density functional theory calculations elucidate the crucial role of the chemical linkers in determining the level alignment when molecules are attached to different metal contacts. We also demonstrate that conductance of thiol‐terminated silanes with Pt electrodes is lower than the ones formed with Au and Ag electrodes, again in contrast to the trends in the metal work‐functions.  相似文献   

18.
The gold‐palladium (Au?Pd) bimetallic nanocluster (NC) catalyst in colloidal phase performs the homocoupling reaction of various aryl chlorides (Ar?Cl) under ambient conditions. We have systematically investigated various aspects of the Au?Pd NC catalysts with respect to this homocoupling reaction by using density functional theory (DFT) calculations, genetic algorithm (GA) approaches, and molecular dynamics (MD) simulations. Our findings include the geometric and electronic structures of the Au?Pd NC, the reactive Pd sites on the NC surface, the electron‐donating effects of surrounding polymer matrix, the reaction mechanism of homocoupling reaction and rate‐determining step, the inverse halogen dependence of the reaction, and the solvation dynamics at interface region between NC and polymer matrix in aqueous solution.  相似文献   

19.
20.
It is a consensus in the field of molecular electronics that the transport of charge across a single molecule depends sensitively on the details of the interaction between the molecule and the metallic leads, such as the molecular orientation. To advance the design of complex molecular devices, it is crucial to have a detailed understanding of these many aspects that influence the electron transport. A simple system that has been used as a paradigm of the class of conjugated aryl molecules is the benzene-1,4-dithiol (BDT). However, we still do not have a full understanding of the BDT transport experiments. Usually the geometries considered in transport calculations assumed that the BDT was connected to the two Au leads via the S atoms, and that the molecule was either perpendicular or close to a perpendicular configuration relative to the Au surfaces. Using ab initio calculations, we show that, for an isolated molecule, the configuration with largest adsorption energy has the BDT phenyl ring closer to being parallel to the surface, and we then argue, based on nonequilibrium Green's function-density functional theory calculations, that, depending on the experimental procedure, this may be the relevant configuration to be used in the transport calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号