首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 161 毫秒
1.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   

2.
炭化温度对烟杆基活性炭孔结构及电化学性能的影响研究   总被引:2,自引:0,他引:2  
夏笑虹  石磊  何月德  杨丽  刘洪波 《化学学报》2011,69(21):2627-2631
以烟杆为原料, 氢氧化钾为活化剂, 通过调节炭化温度(500~800 ℃温度范围)在相同活化条件下制备了具有不同孔隙结构的活性炭材料. N2吸附测试表明随着炭化温度降低, 活性炭的比表面积和总孔容先增大后减小, 中孔比表面积和平均孔径却一直增大. 其中600 ℃炭化样品经KOH活化后可制得比表面积为3333 m2•g-1, 总孔容为2.47 cm3• g-1, 中孔孔容达2.11 cm3•g-1的高中孔率高比表面积活性炭材料. 采用直流充放电法、交流阻抗法和循环伏安法测定上述多孔炭为电极材料的双电层电容器的电化学性能, 结果表明: 炭化温度不同的烟杆基活性炭电极均表现出良好的功率特性, 充放电流增大50倍, 容量保持率均在80%左右, 其中TS-AC-600活性炭电极在有机电解液中1 mA•cm-2充放电时, 比电容达到190 F•g-1. 较高的中孔率和较大的平均孔径使得烟杆基活性炭电极具有良好的高倍率充放电性能.  相似文献   

3.
聚苯胺/活性碳复合型超电容器的电化学特性   总被引:7,自引:0,他引:7  
电化学电容器作为一种新型储能器件具有广泛的应用.采用(NH4)2S2O8化学氧化聚合苯胺法制备了聚苯胺电极材料,采用化学物理二次催化活化法制备了高比表面积活性碳材料.并用循环伏安、恒流充放电以及交流阻抗等方法对上述电极材料的电化学特性进行了研究.实验结果表明,所制备的聚苯胺电极材料具有高于420 F•g-1的法拉第赝电容和良好的电化学特性,所制备的活性碳电极材料则具有160 F•g-1的双电层电容量.分别采用聚苯胺作为正极,活性碳作为负极,38%硫酸作为电解液制备了复合型电化学电容器.复合型电容器工作电压达到1.4 V, 电容器单体比电容达到57 F•g-1,最大比能量和最大真实比功率分别达到15.5 W•h•kg-1和2.4 W•g-1, 峰值比功率达到20.4 W•g-1,电容器循环工作寿命超过500次. 与活性碳双电层电容器相比,复合型电容器还具有较低的自放电率.  相似文献   

4.
用化学共沉淀法和物理方法制得Ni和Ru的氢氧化物共沉淀物,经热处理得到NiO/RuO2复合氧化物. XRD分析表明, RuO2被大量的NiO颗粒所包覆.电化学测试表明, NiO电极材料中引入部分RuO2可以提高比能量和比电容,拓宽工作电位窗一倍以上.掺入10% RuO2的NiO电极比能量达14.2 W•h•kg-1,比电容达210 F•g-1,而NiO电极比能量和比电容只有2.6 W•h•kg-1和118 F•g-1. 200周循环后,化学复合RuO2电极比电容保持在95%以上,物理复合电极仅保持在79%左右.  相似文献   

5.
氧化钌/活性炭超电容器复合电极的电化学行为   总被引:15,自引:4,他引:15  
电化学超电容器作为一种新一代储能系统具有广泛的应用领域. 直流充放电、循环伏安以及交流阻抗等实验显示了本文制备的活性碳材料以及复合电极材料具有良好的电化学性能.活性碳材料的质量比容量为172 F•g-1,采用无定形RuO2与上述活性碳复合制成的新型电极材料具有359 F•g-1以上的比容量和良好的功率特性,并对上述材料的双电层电容和法拉第准电容等电化学特性进行了详细的讨论.  相似文献   

6.
NiO/CNTs的制备及其电化学电容行为研究   总被引:1,自引:0,他引:1  
贾巍  徐茂文  雷超  包淑娟  贾殿赠 《化学学报》2011,69(15):1773-1779
用改良的沉淀法在酸化处理过的碳纳米管(CNTs)上沉积氢氧化镍, 经300 ℃热分解得到NiO/CNTs复合电极材料. 采用X射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)和Brunauer-Emmett-Teller (BET)比表面积分析等方法对合成的材料进行了物理表征|用循环伏安法和充放电测试对其电化学性能进行了研究. 结果表明, CNTs的引入在一定程度上提高了NiO的分散性, 从而大大增加了复合电极材料的比电容和倍率容量. 掺入20% CNTs后复合电极的比电容达到最高值(309 F•g-1)|掺入40% CNTs的复合电极材料扣除CNTs对容量的贡献后(本实验测试CNTs的比容量为35 F•g-1), NiO的放电容量可达420 F•g-1, 明显高于纯相NiO的容量(175 F•g-1), 并且材料的倍率容量也显著提高.  相似文献   

7.
采用磷酸活化和磷酸改性制备了不同种类的含磷活性炭,采用元素分析、X射线光电子能谱(XPS)和氮气吸附等手段分析了活性炭的元素含量、表面化学性质和孔隙结构,采用恒电流充放电、循环伏安和交流阻抗分别考察了活性炭在KOH和H2SO4电解质溶液中作为超级电容器电极材料的电化学性能,采用自由截距多元线性回归拟合统计分析研究了活性炭电极比电容量的影响因素,应用三电极体系分析了磷元素对活性炭电化学性能的影响机理。研究结果表明,活性炭掺杂的磷引入了赝电容,提高了活性炭电极的比电容量,磷元素含量为5.88%(w)的活性炭的比电容量在0.1 A·g-1下达到185 F·g-1。统计分析结果显示,活性炭的中孔有利于电解质离子向微孔内的扩散。在6 mol·L-1 KOH电解质溶液中,孔径在1.10-1.61 nm、2.12-2.43nm及3.94-4.37 nm范围内是电解质离子在活性炭孔隙内部形成双电层的主要场所;在1 mol·L-1 H2SO4电解质溶液中,孔径在0.67-0.72 nm范围内有利于双电层电容的形成。  相似文献   

8.
高能量密度和功率密度炭电极材料   总被引:2,自引:0,他引:2  
以核桃壳为原料, 采用同步物理-化学活化法制备活性炭(AC). 用氮气吸附法和傅立叶红外光谱(FTIR), 对活性炭的孔结构和表面官能团进行了分析. 以活性炭为电极材料制备炭电极, 6 mol·L-1 KOH溶液为电解液组装成超级电容器, 利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能及其与活性炭材料结构的关系. 结果表明, 实验电容器的内电阻、漏电流小, 循环充放电稳定性好, 容量保持率高; 活性炭的比电容随比表面积的增加而增大, 且与BET比表面积呈线性相关; 孔径在1.5-4 nm之间的孔表面有利于形成有效的双电层. 中等比表面积1197 m2·g-1炭样的比电容高达292 F·g-1, 80 mA充放电时, 电容器能量密度高达7.3 Wh·kg-1, 功率密度超过770 W·kg-1,峰值功率密度为5.1 W·g-1.  相似文献   

9.
活化和表面改性对碳纳米管超级电容器性能的影响   总被引:6,自引:0,他引:6  
用KOH为活化剂对碳纳米管(CNTs)进行活化;用浓硝酸为氧化剂对活化CNTs进行表面改性.通过TEM、BET和IR对经过活化和表面改性的CNTs进行了分析,并运用循环伏安和恒流充放电测试研究了活化和表面改性对CNTs超级电容器性能的影响.结果表明,通过活化使CNTs的比表面积增大,从而使其比电容从未活化时的43 F•g-1提高到73 F•g-1;通过表面改性引进赝电容,使电容器的比电容进一步提高到94 F•g-1.  相似文献   

10.
活性炭电极材料的表面改性和性能   总被引:5,自引:0,他引:5  
以硝酸、双氧水、氨水三种化学试剂分别对活性炭进行表面改性, 用N2吸附法和FTIR表征炭材料改性前后孔结构和表面官能团的变化. 制备了以改性活性炭为电极材料, KOH溶液为电解质的模拟双电层电容器. 用恒流充放电、循环伏安、交流阻抗等方法考察了双电层电容器的电化学性能. 结果表明, 改性活性炭比表面积和平均孔径有所降低, 并且在炭材料表面引入了含氧或含氮官能团, 如—OH、>CO、—NH2等, 使炭材料的润湿性增强、电阻减小、电化学性能显著提高. 用65%硝酸改性后炭材料的比容量最高达到250 F·g-1, 比原样炭提高了72.4%; 实验电容器的漏电流急剧下降, 只有3-18 μA, 为原来电容器的漏电流(371 μA)的0.8%-4.9%.  相似文献   

11.
活性碳纳米管的制备及其在有机电解液中的电容性能研究   总被引:1,自引:0,他引:1  
徐斌  吴锋  苏岳锋  曹高萍  陈实  杨裕生 《化学学报》2007,65(21):2387-2392
以KOH为活化剂对碳纳米管进行化学活化制备双电层电容器用高比表面积活性碳纳米管. 采用TEM和N2吸附法表征活性碳纳米管的结构, 采用恒流充放电、循环伏安、交流阻抗等评价其在1 mol•L-1 Et4NBF4/PC中的电容性能. 随活化剂用量增大、活化温度升高和活化时间的延长, 活性碳纳米管的比表面积和比电容都呈增大的趋势. 活化剂用量为3∶1, 800 ℃活化4 h制备的活性碳纳米管的比表面积663 m2•g-1, 比活化前提高了3倍, 其比电容达57.2 F• g-1, 比活化前提高了2倍. 将活性碳纳米管的比电容与其比表面积相关联, 发现两者之间具有非常好的线性关系, 并分析了原因.  相似文献   

12.
纳米纤维聚苯胺在电化学电容器中的应用   总被引:15,自引:0,他引:15  
采用脉冲电流方法(PGM)合成了具有纳米纤维结构的导电聚苯胺(PANI).扫描电子显微镜对膜层观察表明, PANI膜是由直径约为100 nm的掺杂态聚苯胺纤维交织而成.以纳米纤维状聚苯胺组成电化学电容器,研究了其电化学电容性能,并与恒电流方法(GM) 制备的颗粒状PANI电容器性能进行了比较.结果表明,在相同的沉积电量下,PGM制备的纳米纤维状PANI电化学电容器比颗粒状PANI电化学电容器具有更大的电容容量,其电化学电容器的比电容可高达699 F•g-1,能量密度为54.6 Wh•kg-1.并且该电化学电容器具有良好的充放电性能和循环寿命.  相似文献   

13.
A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy) hydrogel as a precursor.This design of PPy hydrogel precursor containing molecular-scale grids(diameter~2.0 nm) allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process.A subsequent activation step produces activated porous carbons(APCs) with tailored pore structures,which renders the APCs abundant subnanopores on their surface to increase the specific capacitance as extra capacitance sites.Coupled with large specific surface area and abundant heteroatoms,the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230 F/g for solid-state supercapacitor.The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg,which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles.Moreover,this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.  相似文献   

14.
石油焦系活性炭的吸附脱硫   总被引:2,自引:3,他引:2  
选取独山子石油焦为原料,以物理活化法制得比表面积达500m2/g~900m2/g的活性炭,进行吸附脱硫研究。采用酸氧化法对活性炭孔结构和微观孔径分布进行改性。酸氧化使活性炭表面酸性官能团含量明显增加,增加量约为原来的5倍。活性炭吸附脱硫性能随表面酸性官能团含量的增加而增大。理想的酸化条件是浓硝酸120℃氧化40min。通过静态吸附实验,活性炭吸附脱硫的最佳条件是,温度25℃,压力1.0MPa,静态吸附6h。最佳条件下吸附脱硫可使模型化合物硫的质量分数从137.9×10-6降至3.1×10-6。从活性炭孔径匹配考察可知,平均孔直径在0.8nm~2.1nm的活性炭对模型化合物硫的质量分数降低具有明显效果。  相似文献   

15.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性.  相似文献   

16.
以廉价的椰壳为原料制备了高比表面积的多孔碳材料,然后在密闭的反应釜中以硝酸蒸汽对多孔碳材料进行了后处理,制备了亲水性更好的多孔碳材料。采用扫描透射电子显微镜(TEM)、物理吸附、X射线粉末衍射(XRD)、拉曼光谱(Raman)和接触角测试对材料的微观形貌、孔道结构、组成和亲水性进行了表征,探究了不同温度下硝酸蒸汽对多孔碳材料的形貌、结构的影响,并采用循环伏安法、恒电流充放电法和交流阻抗法考察了多孔碳材料的超级电容性能。结果表明,经过硝酸蒸汽处理后的多孔碳材料的比表面积和孔体积均有所降低,且随着处理温度的升高,降低得更加明显,而亲水性却越来越好。电化学测试结果表明,经过100℃硝酸蒸汽处理的多孔碳材料(CSC-100)具有最佳的超级电容性能。在以6 mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时CSC-100的比电容可达452.9 F·g-1,而未经硝酸蒸汽处理的多孔碳材料(CSC)的比电容仅为350.4 F·g-1。电容贡献分析表明CSC-100良好的亲水性和表面官能团不仅提高了双电层电容,也提高了赝电容。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号