首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mica is the substrate of choice for microscopic visualization of a wide variety of intricate nanostructures. Unfortunately, the lack of a facile strategy for its modification has prevented the on‐mica assembly of nanostructures. Herein, we disclose a convenient catechol‐based linker that enables various surface‐bound metal‐free click reactions, and an easy modification of mica with DNA nanostructures and a horseradish peroxidase mimicking hemin/G‐quadruplex DNAzyme.  相似文献   

2.
Surface‐addressable nanostructures of linearly π‐conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid‐phase “click” chemistry approach for the synthesis of a series of DNA–chromophore hybrid amphiphiles and report their reversible self‐assembly into surface‐engineered vesicles with enhanced emission. DNA‐directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence‐specific DNA hybridization. This system could be converted to a supramolecular light‐harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.  相似文献   

3.
分别采用点击化学方法对DNA三角双锥结构进行氟-18标记研究,采用二氯亚锡还原法对DNA三角双锥结构进行锝-99m标记研究.结果表明,点击化学方法不适用于DNA三角双锥结构的氟-18标记;而采用二氯亚锡还原法则制得了以DNA三角双锥结构为载体的分子影像探针99mTc-DBNs.  相似文献   

4.
DNA‐based self‐assembled nanostructures are widely used to position organic and inorganic objects with nanoscale precision. A particular promising application of DNA structures is their usage as programmable carrier systems for targeted drug delivery. To provide DNA‐based templates that are robust against degradation at elevated temperatures, low ion concentrations, adverse pH conditions, and DNases, we built 6‐helix DNA tile tubes consisting of 24 oligonucleotides carrying alkyne groups on their 3′‐ends and azides on their 5′‐ends. By a mild click reaction, the two ends of selected oligonucleotides were covalently connected to form rings and interlocked DNA single strands, so‐called DNA catenanes. Strikingly, the structures stayed topologically intact in pure water and even after precipitation from EtOH. The structures even withstood a temperature of 95 °C when all of the 24 strands were chemically interlocked.  相似文献   

5.
Branched organic nanostructures are useful scaffolds that find multiple applications in a variety of fields. Here, we present a novel approach to dendrimer‐like structures. Our design contains a rigid hydrocarbon‐based core (hexaphenylxylylene/tetraethynylphenylmethane) combined with a library of N‐substituted oligoglycines (so‐called peptoids) providing a flexible shell. The use of click chemistry allows rapid assembly of the nanostructures. The possibility of tuning the size and the solubility of this new type of nanostructure will be advantageous for future applications such as heterogeneous catalysis.  相似文献   

6.
We report the regioselective Cu‐free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3‐Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5‐disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu‐free and Cu‐catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high‐density functionalization of DNA is simple, modular, and efficient.  相似文献   

7.
Copper nanostructures were produced as an effective and regioselective catalyst for the synthesis of 1,2,3‐triazoles from a wide range of raw materials, such as sodium azide, epoxides and terminal alkynes, in water via a one‐pot three‐component click reaction. The new heterogeneous catalyst was prepared by a simple ball mill reduction of CuO with NaBH4 using a ball‐to‐powder weight ratio of 50:1 under air atmosphere at room temperature. The catalyst was fully characterized using scanning electron microscopy, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. The copper nanostructures catalysed both ring opening and triazole cyclization steps. Products were obtained in high yields and short reaction times. The reactions were performed at ambient temperature in water as a green solvent. The Cu/Cu2O nanostructures revealed high reusability and high stability via a simple recycling process.  相似文献   

8.
We report the first in vitro selection of DNA nanostructures that switch their conformation when triggered by change in pH. Previously, most pH‐active nanostructures were designed using known pH‐active motifs, such as the i‐motif or the triplex structure. In contrast, we performed de novo selections starting from a random library and generated nanostructures that can sequester and release Mipomersen, a clinically approved antisense DNA drug, in response to pH change. We demonstrate extraordinary pH‐selectivity, releasing up to 714‐fold more Mipomersen at pH 5.2 compared to pH 7.5. Interestingly, none of our nanostructures showed significant sequence similarity to known pH‐sensitive motifs, suggesting that they may operate via novel structure‐switching mechanisms. We believe our selection scheme is general and could be adopted for generating DNA nanostructures for many applications including drug delivery, sensors and pH‐active surfaces.  相似文献   

9.
Nanostructures derived from amphiphilic DNA–polymer conjugates have emerged prominently due to their rich self‐assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA–polymer nanostructures of various shapes by leveraging polymerization‐induced self‐assembly (PISA) for polymerization from single‐stranded DNA (ssDNA). A “grafting from” protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA–polymer conjugates and DNA–diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA–polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye‐labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA–polymer nanostructures.  相似文献   

10.
A highly effective and convenient “bis‐click” strategy was developed for the template‐independent circularization of single‐stranded oligonucleotides by employing copper(I)‐assisted azide–alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7‐deaza‐2′‐deoxyadenosine and 2′‐deoxyuridine residues with different side chains were used in solid‐phase synthesis with phosphoramidite chemistry. The bis‐click ligation of linear 9‐ to 36‐mer oligonucleotides with 1,4‐bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9‐mers. Compared with linear duplexes, circular bis‐click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis‐click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides.  相似文献   

11.
In nucleic acid nanotechnology, designed RNA molecules are widely explored because of their usability originating from RNA’s structural and functional diversity. Herein, a method to design and prepare RNA nanostructures by employing DNA origami strategy was developed. A single‐stranded RNA scaffold and staple RNA strands were used for the formation of RNA nanostructures. After the annealing of the mixtures, 7‐helix bundled RNA tile and 6‐helix bundled RNA tube structures were observed as predesigned shapes. These nanostructures were easily functionalized by introducing chemical modification to the RNA scaffolds. The DNA origami method is extended and utilized to construct RNA nanostructures.  相似文献   

12.
DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single‐particle tracking. We found that the TDNs were rapidly internalized by a caveolin‐dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule‐dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA‐nanostructure‐based drug delivery nanocarriers for targeted therapy.  相似文献   

13.
A versatile, bottom‐up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage‐mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase‐mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as “supramolecular glue” for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami‐controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template.  相似文献   

14.
DNA nanostructures have found widespread applications in areas including nanoelectronics and biomedicine. However, traditional DNA origami needs a long single‐stranded virus DNA and hundreds of short DNA strands, which make this method complicated and money‐consuming. Here, we present a protocol for the assembly of DNA nanoribbons with only four oligonucleotides. DNA nanoribbons with different dimensions were successfully assembled with a 96‐base scafford strand and three short staples. These biotinylated nanoribbons could also be decorated with streptavidins. This approach suggests that there exist great design spaces for the creation of simple nucleic acid nanostructures which could facilitate their application in plasmonic or drug delivery.  相似文献   

15.
5‐Vinyl‐2′‐deoxyuridine (VdU) is the first reported metabolic probe for cellular DNA synthesis that can be visualized by using an inverse electron demand Diels–Alder reaction with a fluorescent tetrazine. VdU is incorporated by endogenous enzymes into the genomes of replicating cells, where it exhibits reduced genotoxicity compared to 5‐ethynyl‐2′‐deoxyuridine (EdU). The VdU–tetrazine ligation reaction is rapid (k≈0.02 M ?1 s?1) and chemically orthogonal to the alkyne–azide “click” reaction of EdU‐modified DNA. Alkene–tetrazine ligation reactions provide the first alternative to azide–alkyne click reactions for the bioorthogonal chemical labeling of nucleic acids in cells and facilitate time‐resolved, multicolor labeling of DNA synthesis.  相似文献   

16.
The use of DNA‐based nanomaterials in biomedical applications is continuing to grow, yet more emphasis is being put on the need for guaranteed structural stability of DNA nanostructures in physiological conditions. Various methods have been developed to stabilize DNA origami against low concentrations of divalent cations and the presence of nucleases. However, existing strategies typically require the complete encapsulation of nanostructures, which makes accessing the encased DNA strands difficult, or chemical modification, such as covalent crosslinking of DNA strands. We present a stabilization method involving the synthesis of DNA brick nanostructures with dendritic oligonucleotides attached to the outer surface. We find that nanostructures assembled from DNA brick motifs remain stable against denaturation without any chemical modifications. Furthermore, densely coating the outer surface of DNA brick nanostructures with dendritic oligonucleotides prevents nuclease digestion.  相似文献   

17.
A novel method for assembling multiple DNA origami structures has been developed by using designed 2D DNA origami rectangles, so‐called “DNA jigsaw pieces” that have sequence‐programmed connectors. Shape and sequence complementarity were introduced to the concavity and convex connectors in the DNA rectangles for selective connection with the help of nonselective π‐stacking interactions between the side edges of the DNA jigsaw piece structures. Single DNA jigsaw piece units were assembled into unidirectional nanostructures with the correct alignment and uniform orientation. Three and five different DNA jigsaw pieces were assembled into predesigned and ordered nanostructures in a programmed fashion. Finally, three‐, four‐, and five‐letter words have been displayed by using this programmed DNA jigsaw piece system.  相似文献   

18.
Three‐dimensional (3D) ordered arrays of human immunoglobulin G (IgG) were fabricated using well‐defined full‐length antibody–polymer conjugates (APCs). The conjugates were prepared through a two‐step sequential click approach with a combination of oxime ligation and strain promoted alkyne–azide cycloaddition. They were able to self‐assemble into lamellar nanostructures with alternating IgG and poly(N ‐isopropylacrylamide) (PNIPAM) nanodomains. As a proof‐of‐concept, these materials were fabricated into thin films and their specific binding ability was tested. The nanostructure not only improves the packing density and the proper orientation of the IgG, but also provides nanochannels to facilitate substrate transport.  相似文献   

19.
Herein, we report a strategy for the synchronization of two self‐assembly processes to assemble stimulus‐responsive DNA nanostructures under isothermal conditions. We hypothesized that two independent assembly processes, when brought into proximity in space, could be synchronized and would exhibit positive synergy. To demonstrate this strategy, we assembled a ladderlike DNA nanostructure and a ringlike DNA nanostructure through two hybridization chain reactions (HCRs) and an HCR in combination with T‐junction cohesion, respectively. Such proximity‐induced synchronization adds a new element to the tool box of DNA nanotechnology. We believe that it will be a useful approach for the assembly of complex and responsive nanostructures.  相似文献   

20.
Histidine‐tagged proteins were bound onto nitrilotriacetic acid (NTA) stripes on a 2‐D DNA scaffold which involved a ssDNA‐NTA conjugate prepared by click chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号