首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diverse range of Lewis acidic alkyl, vinyl and aryl boranes and borenium compounds that are capable of new carbon–carbon bond formation through selective migratory group transfer have been synthesised. Utilising a series of heteroleptic boranes [PhB(C6F5)2 ( 1 ), PhCH2CH2B(C6F5)2 ( 2 ), and E‐B(C6F5)2(C6F5)C=C(I)R (R=Ph 3 a , nBu 3 b )] and borenium cations [phenylquinolatoborenium cation ([QOBPh][AlCl4], 4 )], it has been shown that these boron‐based compounds are capable of producing novel allyl‐ boron and boronium compounds through complex rearrangement reactions with various propargyl esters and carbamates. These reactions yield highly functionalised, synthetically useful boron substituted organic compounds with substantial molecular complexity in a one‐pot reaction.  相似文献   

2.
The dimesitylpropargylphosphanes mes2P?CH2?C≡C?R 6 a (R=H), 6 b (R=CH3), 6 c (R=SiMe3) and the allene mes2P?C(CH3)=C=CH2 ( 8 ) were reacted with Piers’ borane, HB(C6F5)2. Compound 6 a gave mes2PCH2CH=CH(B(C6F5)2] ( 9 a ). In contrast, addition of HB(C6F5)2 to 6 b and 6 c gave mixtures of 9 b (R=CH3) and 9 c (R=SiMe3) with the regioisomers mes2P?CH2?C[B(C6F5)2]=CRH 2 b (R=CH3) and 2 c (R=SiMe3), respectively. Compounds 2 b , c underwent rapid phosphane/borane (P/B) frustrated Lewis pair (FLP) reactions under mild conditions. Compound 2 c reacted with nitric oxide (NO) to give the persistent FLP NO radical 11 . The systems 2 b , c cleaved dihydrogen at room temperature to give the respective phosphonium/hydridoborate products 13 b , c . Compound 13 c transferred the H+/H? pair to a small series of enamines. Compound 13 c was also a metal‐free catalyst (5 mol %) for the hydrogenation of the enamines. The allene 8 reacted with B(C6F5)3 to give the zwitterionic phosphonium/borate 17 . The ‐PPh2‐substituted mes2P‐propargyl system 6 d underwent a typical 1,2‐P/B‐addition reaction to the C≡C triple bond to form the phosphetium/borate zwitterion 20 . Several products were characterized by X‐ray diffraction.  相似文献   

3.
The reaction of HN3 with the strong Lewis acid B(C6F5)3 led to the formation of a very labile HN3?B(C6F5)3 adduct, which decomposed to an aminoborane, H(C6F5)NB(C6F5)2, above ?20 °C with release of molecular nitrogen and simultaneous migration of a C6F5 group from boron to the nitrogen atom. The intermediary formation of azide–borane adducts with B(C6F5)3 was also demonstrated for a series of organic azides, RN3 (R=Me3Si, Ph, 3,5‐(CF3)2C6H3), which also underwent Staudinger‐like decomposition along with C6F5 group migration. In accord with experiment, computations revealed rather small barriers towards nitrogen release for these highly labile azide adducts for all organic substituents except R=Me3Si (m.p. 120 °C, Tdec=189 °C). Hydrolysis of the aminoboranes provided C6F5‐substituted amines, HN(R)(C6F5), in good yields.  相似文献   

4.
Herein, we extend our “combined electrochemical–frustrated Lewis pair” approach to include Pt electrode surfaces for the first time. We found that the voltammetric response of an electrochemical–frustrated Lewis pair (FLP) system involving the B(C6F5)3/[HB(C6F5)3]? redox couple exhibits a strong surface electrocatalytic effect at Pt electrodes. Using a combination of kinetic competition studies in the presence of a H atom scavenger, 6‐bromohexene, and by changing the steric bulk of the Lewis acid borane catalyst from B(C6F5)3 to B(C6Cl5)3, the mechanism of electrochemical–FLP reactions on Pt surfaces was shown to be dominated by hydrogen‐atom transfer (HAT) between Pt, [Pt?H] adatoms and transient [HB(C6F5)3] ? electrooxidation intermediates. These findings provide further insight into this new area of combining electrochemical and FLP reactions, and proffers additional avenues for exploration beyond energy generation, such as in electrosynthesis.  相似文献   

5.
We report herein the synthesis and full characterization of the donor‐free Lewis superacids Al(ORF)3 with ORF=OC(CF3)3 ( 1 ) and OC(C5F10)C6F5 ( 2 ), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2‐F2C6H4, and SO2, as well as the internal C? F activation pathway of 1 leading to Al2(F)(ORF)5 ( 4 ) and trimeric [FAl(ORF)2]3 ( 5 , ORF=OC(CF3)3). Insights have been gained from NMR studies, single‐crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl‐Al(ORF)3]? anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

6.
Protocols for the synthesis of the bulky polyfluorinated triarylboranes 2,6-(C6F5)2C6F3B(C6F5)2 ( 1 ), 2,6-(C6F5)2C6F3B[3,5-(CF3)2C6H3] ( 2 ), 2,4,6-(C6F5)3C6H2B(C6F5)2 ( 3 ), 2,4,6-(C6F5)3C6H2B[3,5-(CF3)2C6H3] ( 4 ) were developed. All boranes are water tolerant and according to the Gutmann-Beckett method, 1 – 3 display Lewis acidities larger than that of the prominent B(C6F5)3.  相似文献   

7.
B(C6F5)3 and P(MeNCH2CH2)3N form a classical Lewis adduct, (C6F5)3BP(MeNCH2CH2)3N. Although (C6F5)3BP(MeNCH2CH2)3N does not exhibit spectroscopic evidence of dissociation into its constituent acid and base, products of frustrated Lewis pair (FLP) addition reactions are seen with PhNCO, PhCH2N3, PhNSO, and CO2. Computational studies show that thermal access to the dissociated acid and base permits FLP reactivity to proceed. These results demonstrate that FLP reactivity extends across the entire continuum of equilibria governing Lewis acid‐base adducts.  相似文献   

8.
A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N‐substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo‐boration cyclisation reaction, which afforded the 5‐alkylidene‐4,5‐dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1‐carboboration is favoured as a result of the increased steric hindrance (1,3‐allylic strain) in the 5‐alkylidene‐4,5‐dihydrooxazolium borate species.  相似文献   

9.
Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2(LR)2] (R=H 1 a ; R=CF3 1 b ) combined with B(C6F5)3 ( 1 a /B(C6F5)3, 1 b /B(C6F5)3) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H−H, Si−H and O−H bonds. Cleavage of H2 and Et3SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR)2][HB(C6F5)3] (R=H 2 a ; R=CF3 2 b ) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2O leads to [Mo(NtBu)(NHtBu)(LR)2][(HO)B(C6F5)3] (R=H 3 a ; R=CF3 3 b ). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a . Mechanistic elucidation revealed insertion of the aldehyde into the B−H bond of [HB(C6F5)3]. We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR)2][{PhCH2O}B(C6F5)3] (R=H 4 a ; R=CF3 4 b ). Catalysis occurs at [HB(C6F5)3] while [Mo(NtBu)(NHtBu)(LR)2]+ (R=H or CF3) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).  相似文献   

10.
1,2,4,5-Tetrakis(trimethylsilylethynyl)benzene reacted with two molar equivalents of the boranes R−B(C6F5)2 (R=C6F5, Me, Ph) in a series of sequential 1,1-carboboration reactions to give ca. 1 : 1 mixtures of the two-fold benzannulated products, namely the respective C2h and C2v symmetric tetra-silyl, bis-boryl substituted anthracenes. Their active B(C6F5)2 substituents were used for consecutive Suzuki-Miyaura C−C coupling reactions to give boron-free phenyl or 2-pyridyl substituted anthracene products.  相似文献   

11.
12.
S-Nitrosothiols (RSNOs) serve as air-stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron-transfer, redox-innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer-sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans-[LA-O-N=N-O-LA]2− [LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO-B(C6F5)3] radical anion, which is susceptible to N−N coupling prior to loss of RSSR.  相似文献   

13.
The reactions of the intramolecular frustrated Lewis pair‐adduct Ph2PC(p‐Tol)?C(C6F5)B(C6F5)2(CNtBu) with XeF2 gave Ph2P(F)C(p‐Tol)?C(C6F5)B(F)(C6F5)2 ( 3 ). This species reacts with two equivalents of Al(C6F5)3?C7H8 producing the salt, [Ph2P(F)C(p‐Tol)?C(C6F5)B(C6F5)2][F(Al(C6F5)3)2] ( 4 ), whereas reaction with HSiEt3/B(C6F5)3 gave Ph2P(F)C(p‐Tol)?C(H)B(C6F5)3 ( 5 ). The photolysis of 3 resulted in aromatization affording the phenanthralene derivative Ph2P(F)C(p‐Tol(o‐C6F4))?CB(F)(C6F5)2 ( 6 ).  相似文献   

14.
The reactivity of the free aluminylene [N]-Al ( 1 ) ([N]=1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butylcarbazolyl) towards boron Lewis acids is investigated. A facile oxidative addition reaction of 1 with Ph2BOBPh2 furnishes an exceedingly scarce example of the free alumaborane [N]-Al(BPh2)(OBPh2) ( 2 ) with an Al−B electron-sharing bond. By contrast, complexation of 1 with B(C6F5)3 and HB(C6F5)2 gives rise to the corresponding Lewis adducts [N]-Al→B(C6F5)3 ( 3 ) and [N]-Al→BH(C6F5)2 ( 4 ), respectively, with an Al→B dative bond. Crystallization of 4 in Et2O produces the adduct [N]-Al(Et2O)→BH(C6F5)2 ( 5 ). Quantum chemical calculations are carried out to understand the formation of 2 as well as the bonding situation of 3 and 5 .  相似文献   

15.
S‐Nitrosothiols (RSNOs) serve as air‐stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron‐transfer, redox‐innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer‐sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans‐[LA‐O‐N=N‐O‐LA]2? [LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO‐B(C6F5)3] radical anion, which is susceptible to N?N coupling prior to loss of RSSR.  相似文献   

16.
The frustrated Lewis pair (FLP)‐catalyzed hydrogenation and deuteration of N‐benzylidene‐tert‐butylamine ( 2 ) was kinetically investigated by using the three boranes B(C6F5)3 ( 1 ), B(2,4,6‐F3‐C6H2)3 ( 4 ), and B(2,6‐F2‐C6H3)3 ( 5 ) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol?1) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect.  相似文献   

17.
Neutral phosphidozirconocene complexes [Cp2Zr(PR2)Me] (Cp=cyclopentadienyl; 1a : R=cyclohexyl (Cy); 1b : R=mesityl (Mes); 1c : R=tBu) undergo insertion into the Zr?P bond by non‐enolisable carbonyl building blocks (O=CR′R′′), such as benzophenone, aldehydes, paraformaldehyde or CO2, to give [Cp2Zr(OCR′R′′PR2)Me] ( 3 – 7 ). Depending on the steric bulk around P, complexes 3 – 7 react with B(C6F5)3 to give O‐bridged cationic zirconocene dimers that display typical frustrated Lewis pair (FLP)/ambiphilic ligand behaviour. Thus, the reaction of {[Cp2Zr(μ‐OCHPhPCy2)][MeB(C6F5)3]}2 ( 10a ) with chalcone results in 1,4 addition of the Zr+/P FLP, whereas the reaction of {[Cp2Zr(μ‐OCHFcPCy2)][MeB(C6F5)3]}2 ( 11a ; Fc=(C5H4)CpFe) with [Pd(η3‐C3H5)Cl]2 yields the unique Zr?Fe?Pd trimetallic complex 13a , which has been characterised by XRD analysis.  相似文献   

18.
4,5‐Dimethyl‐1,2‐bis(1‐naphthylethynyl)benzene ( 12 ) undergoes a rapid multiple ring‐closure reaction upon treatment with the strong boron Lewis acid B(C6F5)3 to yield the multiply annulated, planar conjugated π‐system 13 (50 % yield). In the course of this reaction, a C6F5 group was transferred from boron to carbon. Treatment of 12 with CH3B(C6F5)2 proceeded similarly, giving a mixture of 13 (C6F5‐transfer) and the product 15 , which was formed by CH3‐group transfer. 1,2‐Bis(phenylethynyl)benzene ( 8 a ) reacts similarly with CH3B(C6F5)2 to yield a mixture of the respective C6F5‐ and CH3‐substituted dibenzopentalenes 10 a and 16 . The reaction is thought to proceed through zwitterionic intermediates that exhibit vinyl cation reactivities. Some B(C6F5)3‐substituted species ( 26 , 27 ) consequently formed by in situ deprotonation upon treatment of the respective 1,2‐bis(alkynyl)benzene starting materials ( 24 , 8 ) with the frustrated Lewis pair B(C6F5)3/P(o‐tolyl)3. The overall formation of the C6F5‐substituted products formally require HB(C6F5)2 cleavage in an intermediate dehydroboration step. This was confirmed in the reaction of a thienylethynyl‐containing starting material 21 with B(C6F5)3, which gave the respective annulated pentalene product 23 that had the HB(C6F5)2 moiety 1,4‐added to its thiophene ring. Compounds 12 – 14 , 23 , and 26 were characterized by X‐ray diffraction.  相似文献   

19.
The zirconocene complex [{(C6F5)2B‐(CH2)3‐Cp}(Cp‐PtBu2)ZrCl2] ( 6 ; Cp=cyclo‐C5H4) was prepared by hydroboration of [(allyl‐Cp)(Cp‐PtBu2)ZrCl2] ( 5 ) with HB(C6F5)2 (“Piers’ borane”). It represents a frustrated Lewis pair (FLP) in which both the Lewis acid and the Lewis base were attached at the metallocene framework. Its reaction with 1‐pentyne did not result in the 1,2‐addition of or deprotonation reaction by the FLP, but rather in the 1,1‐carboboration of the triple bond, thereby obtaining a Z/E mixture (1.2:1) of the respective organometallic substituted alkenes 7 . The analogous reaction of 1‐pentyne with the phosphorous‐free system [{(C6F5)2B‐(CH2)3‐Cp)}CpZrCl2] ( 9 ) gave the respective 1,1‐carboboration products ( Z‐10 / E‐10 ≈1.3:1).  相似文献   

20.
The activation of a metal alkyl‐free Ni‐based catalyst with B(C6F5)3 was investigated in the polymerization of 1,3‐butadiene. A catalyst of bis(1,5‐cyclooctadiene)nickel (Ni(COD)2)/B(C6F5)3 was found to have high catalytic activity and 1,4‐cis stereoregularity. The catalyst was also found to provide polybutadiene having a molecular weight (Mw) of up to 117,000, even in the absence of AlR3 and MAO. Variations in the mol ratio of B(C6F5)3 to Ni affected catalytic activity, 1,4‐cis stereoregularity, and the Mw of polybutadiene, while the molecular weight distribution (MWD) of polybutadiene showed little correlation with the mol ratio of B(C6F5)3 to Ni. The use of other borane compounds such as B(C6H5)3, BEt3, and BF3 etherate in place of B(C6F5)3 clearly showed the two main functions of B(C6F5)3 in the present catalyst. The high Lewis acidity of B(C6F5)3 enabled it to activate catalytic complexes, thus inducing the polymerization. The steric bulkiness of B(C6F5)3 suppressed chain transfer reactions, contributing to the production of polybutadiene with a high Mw. Kinetic studies showed that the catalyst had an induction period, possibly due to the time needed for the formation of catalytic complexes starting from Ni(COD)2. A plot of ?ln (1?X), where X is the fractional conversion, as a function of time resulted in a linear relationship, showing that the present catalyst system followed first‐order kinetics with respect to monomer concentration. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1164–1173, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号