首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
气化是实现化学利用碳资源(尤其是煤)生产化学品和燃料的关键工艺。目前,全球拥有超过272套气化装置,主要应用于煤化工,尤其在中国。由于在一个化工厂通过技术集成达到工业规模的集中生产可实现减少二氧化碳排放并促进碳密集型行业的循环经济,如废物管理、化学和交通行业,因此,近年来全球对垃圾气化的兴趣日益浓厚,尤其是那些在煤气化技术方面积累了丰富的人力资本和运营经验以及拥有完整Coal-to-X产品价值链的国家,如中国,在挖掘通过垃圾气化实现Waste-to-X的潜力方面处于独特的地位。具体而言,废弃物可用于补充煤气化生产如下产品:(1)具有较低或零碳足迹的化学品,具体取决于废物是来源于化石资源还是生物资源。(2)来自生物废弃物的零碳足迹的绿色"氢",以补充或替代来自煤气化或蒸汽重整得到的"灰色"氢,以供给氢能汽车,并推动工业脱碳。(3)来自生物废弃物的CO2中性合成液体燃料,用于交通工具,以补充或替代石油燃料和合成煤制液体燃料。然而,迄今为止,利用垃圾作为气化原料的操作经验有限,并且文献中也很少涉及以前和当前的工业垃圾气化经验。为了填补这些空白,本研究介绍了1980年代至2000年代德国的两项开创性技术发展—贝伦拉特(Berrenrath)和SVZ黑水泵(即Sekund?rrohstoff-Verwertungszentrum:黑水泵二次原料回收中心),并分享了以下三种垃圾与煤共气化技术(即WasteCoal-to-X)的相关认识和经验教训:固定床气化:鲁奇干法排渣技术以及BGL熔渣气化技术。流化床气化:高温温克勒(HTW-High Temperature Winkler)气化工艺。气流床气化:GSP(Gaskombinat Schwarze Pumpe),即西门子气化工艺。此外,本研究也总结了目前全球100%垃圾气化技术的发展,即Waste-to-X。在气化技术的三种类型中,研发领域和工业界均对流化床与气流床(作为后期气化)技术的结合产生了浓厚的兴趣,这里介绍三个相关技术的重大发展—Ebara-Ube、Enerkem和ThermoChem Recovery International的技术。除此之外,固定床气化工艺的发展也得到了关注,本文介绍了两个相关技术的重大发展—InEnTec(将固定床与等离子气化相结合)和Sierra Energy(改造传统高炉转炉进行垃圾气化)的技术。借鉴以往和当前的国际发展经验,凭借其庞大的气化规模和丰富的专业知识,逐步将垃圾作为原料融入到煤气化中可以作为中国迈向循环经济和无废城市的第一步。将垃圾与煤共气化技术作为通向垃圾气化的桥梁,不仅可以使中国利用现有的人力资本和基础设施,还可以创造新的就业和商业机会,并支持中国实现可持续的垃圾管理策略,即在进行焚烧和填埋之前先进行减量、再利用和再循环。然而,将煤气化技术直接用于垃圾气化具有挑战性并且充满了较大的风险。本研究分享了贝伦拉特和SVZ黑水泵在垃圾与煤共气化方面遇到的各种运行问题以及从中得到的最新认识。然后介绍了这些积累的经验及认识是如何被考虑并应用到德国弗莱贝格工业大学的能源化工所开发的Flexi技术当中,包括:基于BGL熔渣气化技术开发FlexiSlag固定床气化技术。基于GSP气化技术开发FlexiEntrained气流床气化技术。基于HTW气化技术开发FlexiCOORVED气化技术。目前,Flexi技术在德国弗莱贝格开展中试规模运行,其目标是实现:(1)多元原料气化(例如生物质、煤、石油焦、不同类型的废物);(2)100%垃圾气化;(3)灵活的目标产品(即调整配置得到最大化的合成气产出,其中可含有最大化或最小化的甲烷、焦油和油的含量)以支持全球向碳中和和无废城市转型。鉴于全球(包括中国)实现无废城市和碳中和的目标,垃圾气化技术的长远发展不仅要向100%垃圾气化发展,还必须满足以下可持续性标准才能做出实质性的贡献:(1)多元进料,能够灵活利用多种类型的(废物)原料。(2)碳回收率最大化,以确保垃圾中的碳转移到产品中,而不是在整个过程链中以CO2的形式排放到环境中。(3)通过生产玻璃渣、从渣中回收金属和零废水排放,将环境影响降至最低。本研究最后根据上述三个可持续性标准对三种气化类型进行了定性的整体评价,阐述了它们在垃圾气化应用中的优势和劣势。  相似文献   

2.
大规模煤制天然气系统中气流床气化是一种重要且富吸引力的技术。对一种气流床气化-热解耦合系统进行了研究。该系统中气化炉分为两段:主要进行煤焦气化的气化段以及主要发生煤热解的热解段。采用流程模拟方法建立了耦合系统模型并与煤气化废锅系统进行了比较。同时,考察了操作条件对耦合系统气化性能的影响,提出了优化的操作条件。结果显示,气化温度1400 ℃时,耦合系统优化的蒸汽煤比为250~300 kg(steam)·t-1(dry coal)。耦合系统的冷煤气效率为88.18%,高于气化废锅系统(84.14%),且其消耗指标均有所降低。但耦合系统的气化性能受到热解段焦油和CH4产率很大的影响。耦合系统总体能量利用效率为92.26%,略低于气化废锅系统(93.39%),但其火用效率比气化废锅系统高2.2%。这说明通过热解-气化的耦合方式能够有效回收气化高温合成气中的显热并提高其能量品位。  相似文献   

3.
利用已建立的流化床煤气化模型系统地研究了不同气化方案下的流化床煤气化性能,包括空气气化、空气/蒸气气化、空气/二氧化碳气化、氧气/水蒸气气化、氧气/二氧化碳气化5个气化方案,结果表明:空气/水蒸气和氧气/水蒸气方案具有较优的气化效率和较高的煤气品质,氧气/蒸气气化方案在煤气组分、气化效率和热效率等方面比空气/蒸气气化方案更具优势。  相似文献   

4.
利用循环流化床对天池木垒高碱煤进行了气化实验研究,获得了天池木垒高碱煤在循环流化床上的结渣特性及碱金属迁移规律,并对实验中出现的床内颗粒聚团现象进行了分析。结果表明,不同存在形态的碱金属在煤气化过程中的迁移规律不同,水溶钠和醋酸铵溶钠在煤气化过程中以气态形式析出,不溶钠主要存在半焦中;随着气化温度升高,底渣和煤气中钠含量增加,飞灰中钠含量减少;尾部管道温度降低过程中,煤气中钠的冷凝速率明显高于钾;天池木垒高碱煤气化过程中容易引起床内颗粒聚团,床温越高,颗粒聚团现象越明显,床温波动越大;碱金属与灰分中矿物成分及床料中SiO2反应生成黏性低温共熔物是导致颗粒聚团的关键。  相似文献   

5.
建立了两段式气流床煤气化炉内气固两相流动的三维计算流体力学(CFD)模型,将气体视为连续介质,在Euler坐标系下考察气相的运动;将颗粒视为离散体系,在Lagrange坐标系下研究颗粒的运动。利用所建CFD模型对基本设计尺寸和操作条件下的两段式气流床煤气化炉内气固两相流动进行了模拟,给出了两段式气流床煤气化炉内的气固两相流动的规律和颗粒的分布规律。在此基础上,针对不同的结构(喉口直径变化)和不同的操作条件(两段气固进料量变化)进行了一系列的模拟比较。结果表明,喉口直径的变化对于炉内气固两相流动及颗粒分布有重要影响。随着喉口直径减小,喉口附近区域的气相回流增强,颗粒运动轨线变得更加曲折,颗粒分布发生明显变化。两段气固流量的改变可以明显改变炉内气固流动,随着一段反应区的气固流量增加和二段反应区气固流量减小,一段反应区内的气相回流更加显著, 二段反应区气相回流减弱,颗粒螺旋上升运动增强,反应器边壁处颗粒浓度增大,颗粒沉积现象减弱。  相似文献   

6.
流化床生物质与煤共气化特性的初步研究   总被引:7,自引:3,他引:7  
在热天平和流化床实验装置中研究了生物质与煤的共气化特性,采用程序升温热重法对稻秆焦、高粱秆焦、玉米秆焦和神木煤焦以及生物质焦与煤焦混合物进行水蒸气气化研究。结果表明,生物质焦和煤焦的反应活性依次增大,其顺序为高粱焦>稻秆焦>玉米焦>神木煤焦。一定温度下,生物质焦与煤焦混合物的气化碳转化率高于各自气化碳转化率的加和。在流化床气化实验中,比较了单独煤气化与稻秆/煤混合物气化的结果,实验结果表明,混合物气化碳转化率、气体中可燃组分的体积分数均高于单独煤气化,气体中CO2的体积分数低于单独煤气化CO2的体积分数。  相似文献   

7.
两段式固定床富氧-水蒸气气化实验研究   总被引:2,自引:0,他引:2  
以玉米芯颗粒为原料在两段式固定床气化装置上进行了气化实验,考察了当量比ER、富氧浓度OC和水蒸气配比S/B对气化温度、气化气组分、低位热值、气体产率、气化效率和碳转化率等参数的影响,并比较了两段式固定床与传统下吸式固定床的气化特性。实验结果表明,当量比为0.27时H2的体积分数、CO的体积分数和气化效率达到最大值;增加富氧浓度能优化气化效果,但富氧浓度大于90%后,燃气质量和气化效率均提高不大;增加S/B能提高H2的体积分数,但同时会降低CO的体积分数、气体热值、气化效率;当S/B为0.6时,氢气的体积分数达最高值33.3%,H2/CO比为1.32;相比于传统固定床,两段式固定床气化可明显提高气化温度、氢气的体积分数、碳转化率和气化效率,降低焦油含量。  相似文献   

8.
煤与甲烷共转化制合成气过程的热力学分析   总被引:1,自引:0,他引:1  
采用Gibbs自由能最小法,对流化床煤与甲烷共转化过程进行了热力学分析。在保持体系绝热温度为常压流化床煤气化的操作温度1 273 K下,将煤与甲烷共转化过程的冷煤气效率、产出合成气的单位有效能氧耗及H2/CO比等指标与单纯煤气化过程进行了比较。结果表明,在煤气化体系中增加甲烷进料,能使冷煤气效率提高,单位有效能氧耗降低,产出合成气的H2/CO比可调。此外,甲烷可作为部分氢源,降低过程水耗。从热力学角度证明了煤与甲烷共转化方法对于有效利用煤层气的优越性,所得出的操作线也为该过程的实际操作指出了方向。  相似文献   

9.
煤的加压热解是煤炭加压气化中的一个重要阶段,也可单独作为煤转化的一种技术,已经引起了人们越来越多的重视。但目前对于这一过程的了解和掌握还很不够,还需要作大量的深入研究。目前,我国大多数煤气化都采用固定床气化工艺。故本文在小型固定床反应器中,  相似文献   

10.
气流床煤气化炉内流动、混合与反应过程的研究进展   总被引:1,自引:0,他引:1  
气流床气化过程涉及高温高压下湍流多相流动与复杂化学反应过程的相互作用,涵盖喷嘴雾化与弥散、复杂多相射流流动、炉内湍流混合、复杂气化反应、火焰结构及温度分布等诸多方面,是世界各国研究的热点.对近年来世界各国在气流床气化过程研究上取得的进展进行了综述,包括喷嘴雾化与颗粒弥散机理与雾化过程的影响因素、撞击流驻点偏移规律和撞击面振荡规律、撞击火焰结构与炉内三维温度场、典型煤种气化反应特性与石油焦气化特性以及气流床气化过程模拟.对气流床气化过程未来的研究重点进行了展望.  相似文献   

11.
福建无烟粉煤催化气化   总被引:21,自引:5,他引:16  
报导了福建无烟粉煤在碱性催化剂作用下的催化气化工作进展,在小型Φ18mm固定床与Φ20mm流化床中,进行了水蒸气气化、混合气(空气/水蒸气)气化,采用复合1催化剂添加量8%,850~900℃及流化床条件下,即可获得产气率V>3m3/kg煤(无催化剂时,V<1.6m3/kg煤)及煤气热值QLVH>9MJ/m3(水蒸气气化)与>6MJ/m3(混合气气化)的结果,并与无烟煤气化的工业装置进行了比较,这为无烟粉煤有效转化的工业化试验提供了最重要的依据  相似文献   

12.
报道了两种煤/焦(西山焦煤飞灰、神木煤),在小型循环流化床(CFB)气化反应装置上,以二氧化碳及氧气混合物为气化介质,在不同条件(900~970°C,0~30%氧含量)下的气化反应的研究。结果表明,提高气化温度,气化反应速度提高,尾气中可燃气体浓度(CO,H2,CH4)、碳转化率及气化效率明显提高。气化介质中的氧含量增加,CO浓度、碳转化率及气化强度明显增加。反应性高、挥发分多的煤种更适合在CFB气化反应装置上进行气化反应。  相似文献   

13.
在实验室小型流化床反应器中研究了福建龙岩无烟粉煤纸浆黑液富氧催化气化的特性,考察了纸浆黑液催化剂添加量不同时氧体积分数变化对碳转化率、产气率、煤气组成与热值的影响。结果表明,纸浆黑液催化和富氧气体燃烧的双重作用明显地提高了煤的碳转化率和煤气有效组成;纸浆黑液中钠碱对煤焦气化的催化与对煤灰分中SiO2和Al2O3等氧化物的熔制反应同时发生并存在着竞争;纸浆黑液中钠碱对高温碳与气化剂之间多种反应表现出不同程度的促进。龙岩无烟粉煤在纸浆黑液富氧催化气化时适宜操作条件是氧的体积分数40%和蒸汽/富氧比为1.4kg/m3~2.0kg/m3。碳转化率94%、煤产气率为3.62m3/kg、煤气热值为7.33mJ/m3。  相似文献   

14.
为评价不同气化方案对常压流化床气化的影响,从化学动力学角度并结合化学平衡建立了流化床气化模型,该模型考虑了煤热解和气化所经历的各反应过程。模型预测结果与文献报道的试验数据吻合较好,气化组分的平方误差和在10%左右,表明该模型可以用来预测各种气化方案对常压流化床气化的气化过程、生成煤气组分和气化效率等方面的影响。  相似文献   

15.
在内径28mm流化床中,对阳泉高灰煤在碱性催化剂(固碱和黏胶废碱液)作用下进行了混合气(空气/水蒸气)催化气化研究,两种碱性催化剂的适宜添加量均为6%。不加催化剂,气化温度830℃~900℃与900℃~920℃下,气化反应的表观反应级数n分别约为2/3与1/3;有催化剂(3%固碱)时,表观反应级数有两个明显的温度段,在830℃~860℃,催化气化的表观反应级数n=1;在860℃~920℃,催化气化的表观反应级数为n=1/3。  相似文献   

16.
太原东山煤地下气化模型试验研究   总被引:10,自引:0,他引:10  
通过地下气化模型试验,获得了东山煤地下气化过程的一般规律。进行了东山煤空气气化及纯氧-水蒸气气化试验,研究了鼓风量及气氧比对煤气组成的影响、气化过程的稳定性以及试验条件下的煤层气化速率变化,进行了纯氧-水蒸气地下气化的物料衡算。试验结果表明,东山煤空气气化可以生产低热值空气煤气,鼓风量会影响空气煤气的组成;纯氧-水蒸气地下气化可以获得合格的二甲醚合成原料气,但需根据气化工作面的移动及煤气组成变化,采用移动点供风气化维持气化过程连续稳定进行。气化过程的物料衡算可以用来预测气化煤气的基本组成。气氧比影响煤气组成变化,试验条件下适宜的气氧比范围为1.8~2.2。气化工作面扩展速率在供风点附近出现最大值,变化平稳,瘦煤地下气化具有较高的稳定性。  相似文献   

17.
生物质流化床氧气-水蒸气气化实验研究   总被引:5,自引:0,他引:5  
在小型流化床气化装置上进行了氧气-水蒸气气化实验,考察了原料、当量比、水蒸气配比、温度、二次风和床料对气化特性的影响。结果表明,原料中C和H含量越高,气化气中H2和CO含量越高,焦油含量越低;当量比为0.27和水蒸气配比为0.6时,H2含量达到最大值;温度的升高可提高H2含量,在840 ℃以上,可提高CO含量;二次风从进料口偏上且二次风比率为15%通入,气体组分变化较明显,二次风通入点位置越高,焦油含量降低幅度越大;白云石和石灰石裂解焦油和提高H2含量的活性高于橄榄石,但同时明显提高了气体中的灰分含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号