首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Arachin and its molecular species (arachin I and arachin II) were separated and isolated. The number and kind of subunits of arachin, arachin I and arachin II were determined. Studies were carried out under different experimental conditions using slab gel electrophoresis, size-exclusion chromatography and reversed-phase high-performance liquid chromatography. Gel electrophoresis was done under varying concentrations of resolving gel. Tube gel as well as slab gel electrophoresis were used and continuous as well as discontinuous buffer systems were used for both types of electrophoresis. In addition, the subunits were separated by reversed-phase HPLC using a gradient program. Arachin and arachin II were found to have 12 subunits each while arachin I showed six subunits. The subunits of arachin I were allowed to reconstitute by removing SDS. Eight combinations were tried for studying the reconstitution pattern. Molecular weight and weight ratio in each case were also determined.  相似文献   

2.
Glycinin and its molecular species (glycinin I and glycinin II) were separated and isolated. The number and kind of subunits of glycinin, glycinin I and glycinin II were determined. Studies were carried out under different experimental conditions using slab gel electrophoresis, size-exclusion chromatography and reversed-phase high performance liquid chromatography. Gel electrophoresis was done using both continuous and discontinuous system and under varying concentrations of resolving gel. In addition, the subunits were separated by reversed phase using gradient program. Glycinin and glycinin II were found to have 12 subunits each while glycinin I showed six subunits. Molecular weight and weight ratio in each case were also determined.  相似文献   

3.
UV-INDUCED PROTEIN ALTERATIONS AND LIPID OXIDATION IN ERYTHROCYTE MEMBRANES   总被引:3,自引:0,他引:3  
Certain ultraviolet radiation-induced effects in skin may result from primary photochemical alterations in cell membranes. We have studied isolated erythrocyte membranes in order to determine the UV-fluence and wavelength dependence for protein alterations and lipid oxidation. Protein crosslinking was detected as high molecular weight protein (greater than 200,000 DA) on polyacrylamide/agarose gel electrophoresis. Spectrin decreased more rapidly than the other membrane proteins upon exposure to lambda = 250-380 nm radiation. Nitrogen-purging inhibited the UV-induced decrease in spectrin by 60% and decreased crosslinking to an even greater degree. The decrease in spectrin was not inhibited by superoxide dismutase, catalase, or sodium azide. Radiation at 280 nm was most effective for spectrin loss, 265 and 297 nm were less effective and 254 and 313 nm were not effective. Prior irradiation at 280 nm did not sensitize the membranes to subsequent irradiation at 313 nm indicating that photodecomposition products of tryptophan are not involved. Lipid photooxidation was measured with the thiobarbituric acid assay and was induced at higher fluences of UV radiations than those required for loss of spectrin. These results indicate that the major effects of UV radiation on cell membranes are alterations of proteins and suggest that tryptophan is the major chromophore for these alterations.  相似文献   

4.
Complex III of the mitochondrial electron transport chain, ubiquinol-cytochrome c reductase, was isolated by blue native polyacrylamide gel electrophoresis. Ten of the 11 polypeptides present in this complex were detected directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following electroelution of the active complex. Tryptic and chymotryptic digestion of the complex permit the identification of specific peptides from all of the protein subunits with 70% coverage of the 250 kDa complex. The mass of all 11 proteins was confirmed by second dimension Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and elution of the separated polypeptides. Additionally, the identity of the core I, core II, cytochrome c and the Rieske iron-sulfur protein were confirmed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) characterization of the peptides generated by in-gel trypsin digestion of the SDS-PAGE separated proteins. The methodology demonstrated for analyzing this membrane-bound electron transport complex should be applicable to other membrane complexes, particularly the other mitochondrial electron transport complexes. The MS analysis of the peptides obtained by in-gel digestion of the intact complex permits the simultaneous characterization of the native proteins and modifications that contribute to mitochondrial deficits that have been implicated as contributing to pathological conditions.  相似文献   

5.
Bovine cardiac and rabbit skeletal troponin complexes were separated into their respective subunits employing high-performance liquid chromatographic (HPLC) techniques on CM-300 and Q-300 ion-exchangers. Bovine cardiac and rabbit skeletal subunits were separated on the strong anion-exchanger, Q-300, in 8 M urea, 50 mM Tris, 2 mM EGTA, 0.5 mM dithiothreitol, pH 7.5, employing a linear salt gradient and on the weak cation-exchanger, CM-300, in 8 M urea, 50 mM potassium dihydrogen phosphate, 2 mM EGTA, 0.5 mM dithiothreitol, pH 6.5, using a linear salt gradient. To obtain complete purification of all components of troponin both ion-exchangers were required. The initial separation of troponin was carried out on the strong anion-exchanger followed by weak cation-exchange chromatography of the troponin I collected from the strong anion-exchange column. The troponin T subunits obtained from Q-300 chromatography demonstrated heterogeneity (three components: T1, T2 and T3) while the troponin I collected from both sources on the Q-300 column were both resolved into major doublets (I1 and I2) when rechromatographed on the CM-300 column. The three troponin T fractions and two troponin I fractions isolated from ion-exchange HPLC were examined by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis to confirm that the heterogeneity was due to differences in charge and not molecular weight. These results were in agreement with the charge differences observed from retention times on ion-exchange HPLC. When comparing the same troponin subunit from different muscle sources, considerable differences in the content of charged amino acid residues were also observed.  相似文献   

6.
The application of two-dimensional electrophoresis for the identification of hydrophobic membrane proteins is principally hampered by precipitation of many of these proteins during first-dimension, isoelectric focusing. Therefore new strategies towards the identification and characterization of membrane proteins are being developed. In this work we present a direct and rapid approach from blue-native gels to mass spectrometry, which allows the analyses of complete complexes and prevents protein aggregation of hydrophobic regions during electrophoresis. We combine blue-native gel electrophoresis and liquid chromatography--nanospray-iontrap tandem mass spectrometry to analyze the composition of oxidative phosphorylation complexes I, III, IV and V from bovine-heart mitochondria as a model system containing a number of highly hydrophobic proteins. Bands from blue-native gels were subjected either to in-gel or to in-solution tryptic digestion. The obtained peptide mixtures were further analyzed by liquid chromatography--tandem mass spectrometry and the corresponding proteins were identified by database search. From a total of 86 proteins, 67 protein subunits could be identified including all highly hydrophobic components, except the ND4L and ND6 subunits of complex I. We demonstrate that liquid chromatography--tandem mass spectrometry combined to blue-native electrophoresis is a straightforward tool for proteomic analysis of multiprotein complexes, and especially for the identification of very hydrophobic membrane protein constituents that are not accessible by common isoelectric focusing/sodium dodecyl sulphate gel electrophoresis.  相似文献   

7.
Blue-native polyacrylamide gel electrophoresis is a powerful tool for the separation of intact membrane protein complexes mainly applied to the analysis of the enzymes of the mitochondrial oxidative phosphorylation system (OXPHOS). Combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), it reveals a two-dimensional pattern showing the individual subunits of the five OXPHOS multi-enzyme complexes. This pattern is useful in the diagnostic analysis of several diseases related to disorders in the oxidative phosphorylation system. However, in order to use this method for systematic diagnostic purposes and to be able to link disease with absence or reduced expression of specific subunits, an unambiguous identification of the individual subunits is necessary. In this study, we completed this task, implementing peptide mass fingerprinting and mass spectrometric sequence analysis. In the course of these analyses, we discovered a novel variant of a cytochrome c oxidase subunit VIc.  相似文献   

8.
High‐resolution capillary zone electrophoresis is used to assess the transferrin profile in serum of patients with eight different congenital disorders of glycosylation that represent type I, type II, and mixed type I/II disorders. Capillary zone electrophoresis data are compared to patterns obtained by gel isoelectric focusing. The high‐resolution capillary zone electrophoresis method is shown to represent an effective tool to assess the diversity of transferrin patterns. Hypoglycosylated disialo‐, monosialo‐, and asialo‐transferrin in type I cases can be distinguished from the corresponding underdesialylated transferrin glycoforms present in type II disorders. The latter can be separated from and detected ahead of their corresponding hypoglycosylated forms of type I patients. Both types of glycoforms are detected in sera of mixed type I/II patients. The assay has the potential to be used as screening method for congenital disorders of glycosylation. It can be run with a few microliters of serum when microvials are used.  相似文献   

9.
Abstract— Allophycocyanin from dissociated phycobilisomes of Nostoc sp. occurs in three spectrally identifiable forms that fractionate on calcium phosphate adsorption chromatography as: allophycocyanin (APC) I (15–20%), APC II (4&50%), and APC III (30–40%). APC I has a single absorption maximum at 654 nm, and a fluorescence emission peak at 678 nm. The absorption peaks of APC II and III are both at 650 nm, but the relative absorbance at 620/650 nm of APC III is less than that of APC II. The emission of both is maximum at 660 nm. On zone sedimentation in sucrose, their S20,w values of 6.0 ± 0.1 (APC I), 5.0 ± 0.1 (APC II), and 5.3 ± 0.2 (APC III) were comparable to the order of their elution from Sephadex G-200. On SDS acrylamide gel electrophoresis two subunits were resolved with apparent molecular weights of 16,900 and 18,400 daltons. When stained by Coomassie blue, they were present in a ratio of 1α:1β in APC II and III, and a probable ratio of 2a:3β in APC I. The larger size of APC I may be accounted for by additional β subunits, by the presence of an additional polypeptide of 35,000 daltons, or both. Over several days, bleaching as noted by a decrease in absorbance at 650 nm, occurred in all three forms; in addition, the more pronounced bleaching at 650 nm, relative to 620 nm, results in APC III becoming spectrally identical to APC II. A trace of a fourth pigment, probably comparable to allophycocyanin-B, was occasionally detected. The results suggest that several in vitro APC forms (sharing similar subunits) arise upon phycobilisome dissociation, and that APC I is the form most closely related to the final fluorescence emitter of intact phycobilisomes. In this form it probably serves as the bridging pigment in energy transfer from the phycobilisomes to chlorophyll.  相似文献   

10.
High-performance capillary electrophoresis (HPCE) was used to separate successfully distinct phosphorylated derivatives of individual histone H1 variants. With an untreated capillary (50 cm x 75 microns I.D.) the electrophoresis was performed in about 15 min. Inconvenient interactions of these highly basic proteins with the capillary wall were eliminated by using 0.1 M sodium phosphate buffer (pH 2.0) containing 0.03% hydroxypropylmethylcellulose. Under these experimental conditions the histone H1 variants H1b and H1c obtained from mitotic enriched NIH 3T3 fibroblasts and isolated by reversed-phase high-performance liquid chromatography were clearly separated in their non-phosphorylated and different phosphorylated forms. This result was confirmed by acid-urea gel electrophoresis, comparison with non-phosphorylated histones H1b and H1c, isolated from quiescent NIH 3T3 cells, and incubation of multi-phosphorylated histone H1b with alkaline phosphatase and subsequent acid-urea and capillary electrophoresis. The results illustrate that the application of HPCE to the analysis of histone modifications provides a new alternative to traditional gel electrophoresis.  相似文献   

11.
Three complementary two-dimensional systems for the analysis of cereal prolamins are described. These are electrophoresis at pH 3.1 followed by electrophoresis at pH 9.2, isoelectric focusing (IEF) followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and SDS-PAGE under non-reducing conditions followed by SDS-PAGE with reduction. They together give information on the pIs, Mrs and charge properties of the individual prolamin components, and on their interactions to form oligomers stabilized by inter-chain disulphide bonds. The three systems are then compared for their effectiveness in analysing unreduced prolamin I fractions from wheat and rye, and the IEF/SDS-PAGE system for analysing reduced and pyridylethylated prolamin fractions from all the major cereals. Finally, applications of the systems in biochemical and genetic studies are discussed and illustrated with three examples: analysis of the structural relationships of the S-rich prolamins (B hordeins and gamma-type hordeins) of barley, determination of the interactions of wheat and rye prolamin subunits in a 2RS/2BL translocation line, and the mapping of genes for alpha-type prolamins in the wild grass Haynaldia villosa.  相似文献   

12.
Abstract— The photodynamic action of protoporphyrin on red cell ghosts is reflected by extensive cross-linking of membrane proteins to very high molecular weight protein aggregates. This process was studied with sepharose gel chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis.
Most sensitive to this photodynamic effect are spectrin and band 2. 1, 2. 2, 2.3 and 4.1. polypeptides, which are cross-linked after very brief illumination periods, with a concomitant loss of spectrin-associated ATPase activity. Band 6 protein, representing the monomeric form of glyceraldehyde-3-phosphate dehydrogenase, is also very sensitive to protoporphyrin-induced cross-linking. The enzymatic activity decreased even faster than the amount of band 6 polypeptides, suggesting that modification(s) of the enzyme other than cross-linking, possibly by rapid photooxidation of a thiol group, may be responsible for inactivation.
Extracted and purified spectrin was cross-linked with about the same velocity as membrane-bound spectrin, reinforcing our previously drawn conclusion that membrane lipids are not involved in the cross-linking reaction. Eluted band 6 polypeptides on the other hand exhibited a relatively fast photo-oxidative modification but a much slower cross-linking to dimers and tetramers. This suggests that the membrane structure, e.g. the spectrin matrix may play an essential role in the incorporation of membrane-bound band 6 polypeptides in the high molecular weight cross-linked complex.  相似文献   

13.
Abstract— The proteins of spinach chloroplasts and their subfragments containing photosystem I and photosystem II, obtained by Triton X-100 treatment or French-pressure rupture, were separated by sodium dodecyl sulfate (SDS)-acrylamide electrophoresis at pH 7·0 in phosphate buffer. The individual protein bands were identified where possible by comparing them with known, isolated and characterized proteins from chloroplasts, and their molecular weights were determined. The protein composition of the chloroplast fragments were correlated to the functional properties of these fragments. Distinct patterns were obtained for photosystem I and photosystem II particles. The major protein of photosystem II is expressed in the 23 kilodalton range and photosystem I proteins seem to be clustered mainly in the 50–70 kilodalton range.  相似文献   

14.
This paper presents the results of a study performed to develop a rapid and straightforward method to resolve and simultaneously identify the light-harvesting proteins of photosystem I (LHCI) and photosystem II (LHCII) present in the grana and stroma of the thylakoid membranes of higher plants. These hydrophobic proteins are embedded in the phospholipid membrane, and their extraction usually requires detergent and time consuming manipulations that may introduce artifacts. The method presented here makes use of digitonin, a detergent which causes rapid (within less than 3 min) cleavage of the thylakoid membrane into two subfractions: appressed (grana) and non-appressed (stroma) membranes, the former enriched in photosystem II and the latter containing mainly photosystem I. From these two fractions identification of the protein components was performed by separating them by reversed-phase high-performance liquid chromatography (RP-HPLC) and determining the intact molecular mass by electrospray ionization mass spectrometry (ESI-MS). By this strategy the ion suppression during ESI-MS that normally occurs in the presence of membrane phospholipids was avoided, since RP-HPLC removed most phospholipids from the analytes. Consequently, high quality mass spectra were extracted from the reconstructed ion chromatograms. The specific cleavage of thylakoid membranes by digitonin, as well as the rapid identification and quantification of the antenna composition of the two complexes facilitate future studies of the lateral migration of the chlorophyll-protein complexes along thylakoid membranes, which is well known to be induced by high intensity light or other environmental stresses. Such investigations could not be performed by sodium dodecylsulfate-polyacrylamide gel electrophoresis because of insufficient resolution of the proteins having molecular masses between 22,000 and 25,000.  相似文献   

15.
Angiotensin-II-cleaving angiotensinase A (aminopeptidase A, E.C. 3.4.11.7, ATA) plays an important role in glomerular haemodynamics. the pathophysiology of essential arterial hypertension and the induction of vascular disorders. In order to study biochemical and immunological properties of ATA, two isoforms (I and II) of the glycoprotein were isolated for the first time from human kidney cortex. Kidney cortex homogenate, digested with bromelain, was fractionated by ammonium sulphate precipitation and subsequent hydrophobic interaction chromatography, using a fast protein liquid chromatographic (FPLC) system. By anion-exchange FPLC (Mono Q column), the isoforms of ATA were eluted in two distinct peaks and were further purified by size-exclusion FPLC and preparative polyacrylamide gel electrophoresis. Biochemical, immunological and immunohistological characterization disclosed differences in the intrarenal localization, glycosylation Michaelis constant and apparent molecular mass (native and sodium dodecyl sulphate gel electrophoresis) but similar properties in the double-immunodiffusion technique. Polyclonal rabbit antibodies, raised against ATA isoforms I and II, precipitated an analogous antigen in urine from patients with renal tubular damage.  相似文献   

16.
Isolation and purification of glycinin and its molecular species from an Indian soybean variety (JS-335) was achieved using polyacrylamide gel electrophoresis (PAGE), size exclusion chromatography (SEC) and reversed-phase high-performance liquid chromatography (RP-HPLC). Glycinin was found to have two molecular species (glycinin I and II), and only glycinin I underwent reversible dissociation-association system into alpha and beta species. Glycinin I and II were not found to constitute a dissociation-association system. Glycinin II also did not dissociate under varying conditions of time, pH and ionic strength of buffer. Various species so dissociated were isolated, purified and characterized.  相似文献   

17.
In oxygenic photosynthesis, photosystem II (PSII) carries out the oxidation of water and reduction of plastoquinone. Three PSII subunits contain reactive groups that covalently bind amines and phenylhydrazine. It has been proposed that these reactive groups are carbonyl-containing, co- or post-translationally modified amino acids. To identify modified amino acid residues in one of the PSII subunits (CP47), tandem mass spectrometry was performed. Modified residues were affinity-tagged with either biotin-LC-hydrazide or biocytin hydrazide, which are known to label carbonyl groups. The affinity-tagged subunit was isolated by denaturing gel electrophoresis, and tryptic peptides were then subjected to affinity purification and tandem mass spectrometry. This procedure identified a hydrazide-labeled peptide, which has the sequence XKEGR. This result is supported by quantitative results acquired from peptide mapping and methylamine labeling. The gene sequence and these tandem data predict that the first amino acid, X, which is labeled with the hydrazide reagent, is a modified form of aspartic acid. On the basis of these data, we propose that D348 of the CP47 subunit is post- or co-translationally modified to give a novel amino acid side chain, aspartyl aldehyde.  相似文献   

18.
We report a subdivision of the mitochondrial proteome into defined sets of proteins, which is based on the combination of three different gel electrophoresis procedures. First, Blue-native polyacrylamide gel electrophoresis is employed to separate mitochondrial protein complexes. The protein complexes are electroeluted and completely detached from Coomasssie blue. Subsequently the subunits of the protein complexes are separated by isoelectric focusing and finally by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The resolution capacity of the procedure is demonstrated for the ATP synthase complex, the cytochrome c reductase complex and the preprotein translocase of the outer mitochondrial membrane (the TOM complex). The method allows the separation of isoforms of subunits forming part of protein complexes, whose occurrence seems to be rather a rule than an exception in higher eukaryotes. Furthermore, extremely hydrophobic proteins are detectable on the gels.  相似文献   

19.
The new bis(ferrocene)-cyclam macrocycle 1,8-bis(ferrocenylmethyl)-1,4,8,11-tetraazacyclotetradecane, denoted L, has been synthesized. Two Cu(II) complexes with L have been isolated and characterized from X-ray structure determination and electrochemical studies. These two LCu(II) complexes correspond to the type I (ferrocenyl subunits in the same side of the cyclam plane) and type III (ferrocenyl subunits above and below the cyclam plane) isomers. The type I LCu(II) complex was synthesized from L and a Cu(2+) salt, while the type III isomer was obtained by oxidation in air or by comproportionation of the Cu(I) complex. The interconversion between type I and type III LCu(II) complexes is negligible in acetonitrile and slow in dimethyl sulfoxide but fast via an electrochemical reduction-reoxidation cycle. According to UV-vis and electrochemical characterizations, the type III isomer is thermodynamically more stable and the type I isomer is kinetically favored. A type III LNi(II) complex was also isolated and characterized by X-ray diffraction analysis and from electrochemical studies.  相似文献   

20.
To determine simultaneously the relative molecular mass (Mr) of a native oligomeric protein, and the number and Mr of its subunits, a method using two-dimensional electrophoresis was developed. To determine the Mr of a native oligomeric protein, pore gradient gel electrophoresis was performed for the first dimension. Native proteins were dissociated into their subunits by sodium dodecyl sulphate (SDS) in a gel slice, then applied to SDS polyacrylamide gel electrophoresis for the second dimension to determine the Mr of subunits. The advantage, accuracy, limitations and application of the method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号