首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
3.
The title compound, trans‐bis­(hexa­fluoro­antimonato‐F)(phthalocyaninato‐κ4N29,30,31,32)copper(II), [Cu(SbF6)2(C32­H16N8)] or Cu(pc)(SbF6)2 (pc is phthalocyaninate), comprises a six‐coordinate Cu atom, lying on an inversion center, bonded to four N atoms of a phthalocyanine ring and to F atoms of two trans SbF6? groups. The compound is presumed to consist of a CuII center and a doubly oxidized phthalocyanine ring, by analogy with Cu(pc)(ReO4)2.  相似文献   

4.
Preparation, Properties and Crystal Structure of Bis(phthalocyaninato)cerium(IV) The anodic or chemical oxidation with dibenzoylperoxide of solutions of bis(phthalocyaninato)cerate(III) in dichloromethane yields selectively sparely soluble bis(phthalocyaninato)cerium(IV), [Ce(Pc(2-)) 2 ]. Green, monoclinic needles cristallize with a = 18.783(12) Å b = 18.739(16) Å c= 15.618(10) Å ß114.30(7)°; Z = 4; space group C2/c. [Ce(Pc(2–)) 2 ] is a sandwich complex in which the cerium Atom is eightfold coordinated by the isoindole nitrogens of the two staggered convex Pc-rings. The u.v.-vis., m.i.r., f.i.r. and resonance Raman spectra are consistent with the structure.  相似文献   

5.
6.
The effects of alkyloxy substituents attached to one phthalocyanine ligand of three heteroleptic bis(phthalocyaninato) yttrium complexes Y(Pc)[Pc(α‐OCH3)4] ( 1 ), Y(Pc)[Pc(α‐OCH3)8] ( 2 ), and Y(Pc)[Pc(β‐OCH3)8] ( 3 ), as well as their reduction products {Y(Pc)[Pc(α‐OCH3)4]}? ( 4 ), {Y(Pc)[Pc(α‐OCH3)8]}? ( 5 ), and {Y(Pc)[Pc(β‐OCH3)8]}? ( 6 ) [H2Pc(α‐OCH3)4=1,8,15,22‐tetrakis(methyloxy)phthalocyanine; H2Pc(α‐OCH3)8=1,4,8,11,15,18,22,25‐octakis(methyloxy)phthalocyanine; H2Pc(β‐OCH3)8=2,3,9,10,16,17,23,24‐octakis(methyloxy)phthalocyanine] are studied by DFT calculations. Good consistency is found between the calculated results and experimental data for the electronic absorption, IR, and Raman spectra of 1 and 3 . Introduction of electron‐donating methyloxy groups on one phthalocyanine ring of the heteroleptic double‐deckers induces structural deformation in both phthalocyanine ligands, electron transfer between the two phthalocyanine rings, changes in orbital energy and composition, shift of electronic absorption bands, and different vibrational modes of the unsubstituted and substituted phthalocyanine ligands in the IR and Raman spectra in comparison with the unsubstituted homoleptic counterpart Y(Pc)2. The calculations reveal that incorporation of methyloxy substituents at the nonperipheral positions has greater influence on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium double‐deckers than at the peripheral positions, which increases with increasing number of substituents. Nevertheless, the substituent effect of alkyloxy substituents at one phthalocyanine ligand of the double‐decker on the unsubstituted phthalocyanine ring and on the whole molecule and the importance of the position and number of alkyloxy substituents are discussed. In addition, the effect of reducing 1 – 3 to 4 – 6 on the structure and spectroscopic properties of the bis(phthalocyaninato) yttrium compounds is also discussed. This systemic DFT study is not only useful for understanding the structure and spectroscopic properties of bis(phthalocyaninato) rare earth metal complexes but also helpful in designing and preparing double‐deckers with tunable structure and properties.  相似文献   

7.
Crystals of the novel title arsenic(III) phthalocyanine complex, [As(C32H16N8)]2[As4I14] or [(AsPc)+]2·[As4I14]2−, where Pc is phthalocyaninate(2−), have been obtained by the reaction of pure powdered As with phthalo­nitrile under a stream of iodine vapour at 493 K. The crystals are built up of separate but interacting [AsPc]+ cations and [As4I12]2− anions. The As atom of the [AsPc]+ unit is bonded to the four iso­indole N atoms of the Pc macrocycle and lies 0.743 (2) Å out of the plane defined by these four N atoms. The anionic part of the complex consists of AsI3 and [AsI4] units joined together into an [As4I14]2− anion. The arrangement of the oppositely charged moieties, [AsPc]+ and [As4I14]2−, in the crystal is determined mainly by ionic attraction and by donor–acceptor interactions between the [AsPc]+ and [As4I14]2− ions.  相似文献   

8.
Mono- and Dinuclear MoII Phthalocyaninates(2–): Syntheses and Properties of Bis(cyano)phthalocyaninato(2–)molybdate(II) and Bis(phthalocyaninato(2–)molybdenum(II)) Blue diamagnetic bis(phthalocyaninato(2–)molybdenum(II)) is synthezied by reduction of oxophthalocyaninato(2–)molybdenum(IV) with boiling triphenylphosphine. The Mo–Mo stretching vibration ist observed in the resonance Raman spectrum at 374 cm–1. It is chemically inert and dissolves in conc. sulfuric acid without decomposition. It reacts with molten tetra(n-butyl)ammonium cyanide to yield redbrown paramagnetic bis[tetra(n-butyl)ammonium] biscyanophthalocyaninato(2–)molybdate(II) (μeff = 3.15 μB; S = 1). The complex salt is very instable and demetallizes in solution. In the extraordinary UV-VIS-NIR spectrum an intense trip-triplet transition at 7780 cm–1 together with a very structured B region between 14000 and 21000 cm–1 of comparable absorbance is observed.  相似文献   

9.
Bis(triphenylphosphine)iminium Bis(methoxo)phthalocyaninato(2–)ferrate(III) – Synthesis and Crystal Structure Chlorophthalocyaninato(2–)ferrate(III) reacts with bis(triphenylphosphine)iminium hydroxide in methanol/acetone solution to yield blue crystals of bis(triphenylphosphine)iminium bis(methoxo)phthalocyaninato(2–)ferrate(III). The complex salt crystallizes as an acetone/methanol solvate (bPNP)[Fe(OCH3)2pc2–] · (CH3)2CO · 1.5 CH3OH in the triclinic space group P 1 (no. 2) with the cell parameters a = 13.160(5) Å, b = 15.480(5) Å, c = 17.140(5) Å, α = 97.54(5)°, β = 91.79(5)°, γ = 95.44(5)°. The Fe atom is located in the centre of the pc2– ligand coordinating four isoindole N atoms (Niso) of the pc2– ligand and two O atoms of the methoxo ligands in a mutual trans arrangement. The average Fe–O and Fe–Niso distances are 1.887 and 1.943 Å, respectively. The cation adopts the bent conformation (< P–N–P = 140.4(2)°) with P–N distances of 1.579(3) and 1.575(3) Å.  相似文献   

10.
11.
12.
13.
Crystals of the novel title arsenic(III)–phthalocyanine complex, [As(C32H16N8)]2[As2I8] or [AsPc]2[As2I8], where Pc is the phthalocyaninate(2−) macrocycle, have been obtained from the reaction of pure powdered arsenic with phthalonitrile under oxidizing conditions (iodine vapour) at 463 K. The crystals are formed by separate but inter­acting [AsPc]+ cations and centrosymmetric [As2I8]2− anions. The As atom of the [AsPc]+ ion is bonded to the four isoindole N atoms of the Pc macrocycle and lies 0.762 (1) Å out of their plane. The anionic part of the complex consists of two [AsI4] units joined together into a centrosymmetric [As2I8]2− counter‐ion. The arrangement of oppositely charged moieties, viz. [AsPc]+ and [As2I8]2−, in the crystal structure is determined mainly by their ionic attractions and by π–π inter­actions between the aromatic phthalocyaninate(2−) macrocycles.  相似文献   

14.
Blue, paramagnetic bis(phthalocyaninato(2–)rhenium(II)) (μeff = 0,88 μB, per Re, at 300 K) is prepared by thermal decomposition of trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), in boiling triphenylphosphine. It crystallizes in the triclinic space group P 1 with cell parameters as follows: a = 7.799(3) Å, b = 12.563(7) Å, c = 12.69(1) Å, α = 89.97(5)°, β = 94.14(5)°, γ = 106.39(4)°; Z = 1. Two cofacial phthalocyaninates are bonded together by a Re–Re bond with a Re–Re distance of 2.285(2) Å. The Re atoms are located distinctly outside the centre of the (Niso)4 planes by 0.426(3) Å. The Re–Niso distance varies from 1.99(1) to 2.04(1) Å (average 2.02 Å). The pc2– ligands are in an eclipsed conformation and concavely distorted. In the UV-VIS-NIR spectrum the B region is split into two bands of comparable intensity due to strong excitonic coupling. The Re–Re stretching vibration at 240 cm–1 is selectively enhanced in the resonance Raman spectrum (λexc = 488 nm).  相似文献   

15.
在回流的正戊醇中,以RE(acac)3·nH2O (acac=乙酰丙酮一价阴离子)为模板,以DBU(1,8-二氮杂双环[5.4.0]十一烯-7)作催化剂,在回流的正戊醇中与4,5-二(4-甲氧苯氧基)邻苯二甲氰反应,我们合成了一系列的15个新型稀土对称二层配合物M[Pc(MeOPhO)8]2[M=Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu;H2Pc(MeOPhO)8=2,3,9,10,16,17,23,24-八(4-甲氧苯氧基)酞菁]。整个系列的对称二层配合物主要借助于UV-Vis,IR谱学手段得到充分的表征。所有的研究表明在两个大环之间存在强烈的π-π相互作用,空穴主要位于酞菁大环配体上。  相似文献   

16.
系统研究了对称三明治型二层酞菁稀土配合物M(Pc)2在300~800 nm范围内的电子吸收光谱,首次采用导数光谱对光谱区域内的叠加谱带及肩带进行了分离,并求算了相应吸收的摩尔吸光系数。结果表明,该系列酞菁稀土配合物的Soret带都分裂两个吸收峰,配合物的吸收谱带除位于Soret带低能一侧和酞菁π阴离子自由基吸收高能一侧的吸收以外均随镧系收缩发生蓝移,但Soret带蓝移程度较小,其余谱带吸收波长与稀土离子半径呈现线性关系;配合物电子吸收光谱中,叠加谱带相邻两吸收峰的强度比随镧系收缩发生规律性变化,与稀土离子半径也存在良好的线性关系,表现出明显的离子半径效应。  相似文献   

17.
A novel series of double‐decker lanthanide(III) bis(phthalocyaninato)–C60 dyads [LnIII(Pc)(Pc′)]–C60 (M=Sm, Eu, Lu; Pc=phthalocyanine) ( 1 a – c ) have been synthesized from unsymmetrically functionalized heteroleptic sandwich complexes [LnIII(Pc)(Pc′)] (Ln=Sm, Eu, Lu) 3 a – c and fulleropyrrolidine carboxylic acid 2 . The sandwich complexes 3 a – c were obtained by means of a stepwise procedure from unsymmetrically substituted free‐base phthalocyanine 5 , which was first transformed into the monophthalocyaninato intermediate [LnIII(acac)(Pc)] and further reacted with 1,2‐dicyanobenzene in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU). 1H NMR spectra of the bis(phthalocyaninato) complexes 3 a – c and dyads 1 a – c were obtained by adding hydrazine hydrate to solutions of the complexes in [D7]DMF, a treatment that converts the free radical double‐deckers into the protonated species, that is, [LnIII(Pc)(Pc′)H] and [LnIII(Pc)(Pc′)H]–C60. The electronic absorption spectra of 3 a – c and 1 a – c in THF exhibit typical transitions of free‐radical sandwich complexes. In the case of dyads 1 a – c , the spectra display the absorption bands of both constituents, but no evidence of ground‐state interactions could be appreciated. When the UV/Vis spectra of 3 a – c and 1 a – c were recorded in DMF, typical features of the reduced forms were observed. Cyclic voltammetry studies for 3 a – c and 1 a – c were performed in THF. The electrochemical behavior of dyads 1 a – c is almost the exact sum of the behavior of the components, namely the double‐decker [LnIII(Pc)(Pc′)] and the C60 fullerene, thus confirming the lack of ground‐state interactions between the electroactive units. Photophysical studies on dyads 1 a – c indicate that only after irradiation at 387 nm, which excites both C60 and [LnIII(Pc)(Pc′)] components, a photoinduced electron transfer from the [LnIII(Pc)(Pc′)] to C60 occurs.  相似文献   

18.
19.
Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized.  相似文献   

20.
Tetra(n-butyl)ammonium Phthalocyaninato(2–)lithate Tetrahydrofurane and Bis(tetra(n-butyl)ammonium) Phthalocyaninato(2–)lithate Fluoride Hydrate; Synthesis and Crystal Structure Dilithiumphthalocyaninate(2–) reacts with excess tetra(n-butyl)ammonium fluoride trihydrate to yield a mixture of blue tetra(n-butyl)ammonium phthalocyaninato(2–)lithate tetrahydrofurane and bis(tetra(n-butyl)ammonium) phthalocyaninato(2–)lithate fluoride hydrate. The latter crystallizes triclinic with crystal data: a = 8.6480(1) Å; b = 12.620(2) Å; c = 14.866(5) Å; α = 82.44(2)°; β = 87.01(2)°; γ = 75.02°; space group P1 ; Z = 1. Fluoride is not coordinated to lithium. On the contrary, a double-salt is formed, which consists of alternating layers of cations and anions. This arrangement opens a cavity in the centre of the unit cell which shares statistically a fluoride and a disordered fluoride hydrate. Pure tetra(n-butyl)ammonium phthalocyaninato(2–)lithate is obtained as a tetrahydrofurane solvate by the reaction of dilithiumphthalocyaninate(2–) with tetra(n-butyl)ammonium bromide in tetrahydrofurane. The solvate crystallizes monoclinic with crystal data: a = 12.455(5) Å; b = 23.396(5) Å; c = 16.120(5) Å; β = 94.986(5)°; space group P2/c1; Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号