首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以自制的高磺化度磺化聚芳醚酮砜(SPAEKS)和含有氨基的聚芳醚酮(Am-PAEK)为原料,通过共溶剂涂膜法制备了不同重量比例的Am-PAEK/SPAEKS复合膜.通过高温(160℃)处理使氨基和磺酸基团在复合膜内形成交联,制得交联型复合膜.复合膜的热性能、尺寸稳定性、阻醇性能有所提高,而且交联型复合膜中的Am-PAEK/SPAEKS-C-3质子传导率在120℃时达到了0.0892 S/cm,高于在相同测试条件下SPAEKS膜的0.0654 S/cm和Nafion膜的0.062 S/cm,而其甲醇渗透系数在25℃时达到0.14×10-6cm2/s,低于SPAEKS膜的0.85×10-6cm2/s和Nafion膜的2×10-6cm2/s.实验结果表明,Am-PAEK/SPAEKS交联型复合膜有望在中高温质子交换膜燃料电池中得到应用.  相似文献   

2.
将磺化二氯二苯砜(SDCDPS)、二氯二苯砜(DCDPS)与4,4′-联苯酚(BP)通过亲核缩聚反应得到一系列具有不同磺化度的磺化聚芳醚砜(SPAES)共聚物.通过FT-IR,TGA和DSC等分析方法对其结构及性能进行表征.并用透射电镜对其内部形态进行分析,建立了结构与性能之间的关系.研究了不同磺化度对膜性能的影响.结果表明,聚合物中磺酸基团的增多导致了磺化聚芳醚砜膜的吸水率、离子交换容量、质子传导率和甲醇渗透系数的增加.通过对膜的综合性能评价发现,磺化度为0.8的磺化聚芳醚砜膜在80℃时的质子传导率为0.116S/cm,100℃时的质子传导率为0.126S/cm,均高于Nafion117膜(0.114S/cm和0.117S/cm),且甲醇渗透系数为8.4×10-7cm2/s,远远低于Nafion117膜(2.1×10-6cm2/s).  相似文献   

3.
DMFCs用磺化聚醚醚酮/功能化二氧化硅复合质子交换膜   总被引:1,自引:0,他引:1  
在磺化度(DS)为55.1%的磺化聚醚醚酮(SPEEK)中掺杂功能化二氧化硅(吸湿性SiO2溶胶及带有磺酸基团的二氧化硅(SiOx-S)粒子)制备SPEEK/SiO2和SPEEK/SiOx-S复合质子交换膜.SiO2和SiOx-S的掺杂能有效提高复合膜的抗溶胀、阻醇性能及高温低湿情况下的电导率.纯SPEEK膜在80℃溶胀为52.6%,而SiO2和SiOx-S掺杂量为15%的复合膜在此温度下分别仅有26.2%和27.3%的溶胀.在室温至80℃范围内,SPEEK/SiO2(20 wt%)和SPEEK/SiOx-S(20 wt%)复合膜的甲醇透过系数比Nafion115膜小近2个数量级.在120℃、相对湿度(RH)为40%情况下,SPEEK纯膜的电导率仅为2.6×10-4S.cm-1,SPEEK/SiO2(20 wt%)复合膜约为2.0×10-3S.cm-1,而SPEEK/SiOx-S(20 wt%)复合膜高达1.0×10-2S.cm-1,与Nafion115相当.SPEEK/SiO2(20 wt%)和SPEEK/SiOx-S(20 wt%)2种复合膜的尺寸稳定性较高,膜电极无催化剂与膜分离现象,其DMFCs单电池性能好于SPEEK膜.  相似文献   

4.
制备了基于磷钨酸(PWA)与磺化杂萘联苯聚醚酮(SPPEK)的无机-有机复合质子交换膜, 红外光谱测试结果表明, 复合膜中PWA通过端氧和桥氧共同与SPPEK发生作用; 由SEM照片看出, 对磺化度为58%的SPPEK, PWA掺杂量为20%和40%时杂多酸的分散良好, 掺杂量为60%时膜内出现颗粒聚集; PWA在水中的溶出性测试发现, 用水处理4天, 各复合膜中PWA的溶出率均低于10%; PWA/SPPEK膜具有良好的质子导电性, PWA掺杂量高于40%、磺化度为58%的SPPEK为基质的复合膜在100 ℃以上的电导率接近甚至超过Nafion115膜的电导率, 复合膜的电导率和水含量均随PWA掺杂量的增加而增加; 随着PWA掺杂量的增加复合膜的阻醇性能下降, 但除PWA掺杂量60%、SPPEK磺化度58%的复合膜外, 所制备的多种复合膜的甲醇透过系数均低于Nafion115膜.  相似文献   

5.
1引言 直接甲醇燃料电池(DMFC)被认为是最适合发展可移动电源的选择之一,目前困扰DMFC发展的主要问题之一是所使用的质子交换膜(主要是杜邦公司的Nafion膜)的阻醇性能较低.磺化聚醚醚酮膜(SPEEK)[1]特有的微观结构使其阻醇性能明显的优于Nafion膜,而较低的质子传导率、较差的机械性能以及溶胀等缺点限制了它的应用;本文通过在其中加入二氧化硅(SiO2)[2]和磷钨酸(PWA)[3]制备磺化聚醚醚酮/二氧化硅/磷钨酸导电复合膜,并考察了二氧化硅及磷钨酸对复合膜溶胀性能、质子传导率及机械性能的影响.  相似文献   

6.
合成了4,4’-二(间氨基苯氧基)联苯-3,3’-二磺酸(mBAPBDS)单体, 采用红外光谱和核磁共振等方法对其结构进行了表征. 使用mBAPBDS, 2-(对胺基苯基)苯并噁唑-5-胺(APBA)和1,4,5,8-萘四甲酸二酐(NTDA)共聚合成了含有噁唑结构的新型磺化聚酰亚胺(NTDA-mBAPBDS/APBA), 通过控制磺化二胺与非磺化二胺的比例来控制磺化程度. NTDA-mBAPBDS/APBA共聚物表现出较好的溶解性、成膜性能和良好的热稳定性, 其磺酸基团分解温度高于300 ℃. 采用溶液浇铸法制备了磺化聚酰亚胺(SPIs)膜, 对膜的吸水率、溶胀度和质子电导率等性能进行了初步的研究. 结果表明, SPIs膜具有适当的吸水率和良好的尺寸稳定性, 其室温电导率在4.72×10-3和9.60×10-3 S/cm之间, 接近于相同条件下Nafion®117的电导率(9.80×10-3 S/cm).  相似文献   

7.
采用高温一步法合成了一系列不同磺化度的三元共聚磺化聚酰亚胺(SPI),通过控制磺化二胺与非磺化二胺的摩尔比来调节磺化度.选取碱性聚合物聚乙烯吡咯烷酮(PVP)与SPI按质量比1∶9进行共混,制成SPI/PVP酸碱复合膜.对复合膜的吸水率、离子交换容量、钒离子渗透率以及电池性能进行了测试.结果表明,随着磺化度的升高,复合膜的吸水率、离子交换容量、质子电导率升高以及钒离子渗透率升高.复合膜的隔膜选择性比Nafion117的选择性好,其中SPI/PVP-3的选择性是Nafion117的10倍.电池性能测试表明,随磺化度的升高,复合膜能量效率升高.其中SPI/PVP-3膜较Nafion117膜具有较高的库伦效率和能量效率,通过循环测试SPI/PVP-3膜性能稳定,充放电理想.  相似文献   

8.
给出了不同磺化度下的磺化聚醚醚酮(SPEEK)用作质子交换膜的一系列性能,另外提出了一种新型的酸碱共混质子交换膜,其中,磺化聚醚醚酮和壳聚糖分别被选为酸性、碱性高分子电解质,并对所制备的质子交换膜的相关性能如质子传导性,甲醇渗透性,吸水率以及膜溶胀性、热稳定性等进行了表征,结果表明此种新型复合膜尽管在质子传导性能方面有所下降,阻醇性能改变不大,但是膜溶胀性和吸水率方面有了较大的改善.磺化度为71.4%的SPEEK与壳聚糖以5∶1摩尔比共混制备的质子交换膜,其性质可以与商品化的Nafion 117相媲美,有望在甲醇燃料电池中得到应用.  相似文献   

9.
通过咪唑接枝、共价交联制备出交联型咪唑改性磺化聚醚醚酮(SPEEK)质子交换膜.通过接枝咪唑可以大幅提高质子电导率,25℃下电导率可达0.14 S/cm,高于Nafion膜(0.086 S/cm),并随着交联度的增加,质子电导率逐渐降低,但交联膜的致密网络结构使得甲醇渗透明显降低,当交联度为20%时膜的电导率和甲醇选择性分别高达0.105 S/cm和4.57×10~5S·s/cm~3,实现了质子电导和甲醇阻隔的均衡.通过共价交联,膜的氧化稳定性和尺寸稳定性大幅提升.采用交联度为20%的改性SPEEK膜,被动式直接甲醇燃料电池(DMFC)在25℃下的最大输出功率密度达29.7 mW/cm~2,可与商业化Nafion 115膜相媲美,展现出良好的应用前景.  相似文献   

10.
以高磺化度的磺化聚芳醚酮砜(SPAEKS)和吡咯(Py)为原料,通过原位聚合的方法制备了含有不同吡咯含量的SPAEKS/PPy复合膜.红外谱图表明SPAEKS聚合物中的磺酸基团与聚吡咯(PPy)中的亚氨基基团之间形成了强烈的相互作用.扫描电镜照片显示PPy能够均匀地分散在SPAEKS聚合物基体中,没有发生团聚现象.通过对复合膜的性能测试发现PPy的引入提高了复合膜的热稳定性,降低了复合膜的吸水率,改善了其水溶胀性.同时膜中水的脱附系数下降,提高了膜的保水能力.SPAEKS/PPy-3复合膜的甲醇渗透系数达到了1.18×10-7cm2/s,明显低于纯SPAEKS膜的8.52×10-7cm2/s,而其质子传导率虽有所降低,但在25℃和80℃仍然分别达到了0.039S/cm和0.061S/cm,能够满足质子交换膜对质子传导率的要求.研究结果表明,聚吡咯与SPAEKS中磺酸基的摩尔比为0.99的复合膜有望在直接甲醇燃料电池中得到应用.  相似文献   

11.
通过在磺化聚醚醚酮(SPEEK)中掺杂1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC))制备出SPEEK/Zr(PBTC)复合质子交换膜.结果表明,与纯SPEEK膜相比,Zr(PBTC)的掺杂能降低复合膜的吸液量及甲醇透过系数,且随着Zr(PBTC)含量的增加,这种作用越趋明显.在室温至80℃范围内,复合膜的甲醇透过系数在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,当温度大于90℃时,含40wt%Zr(PBTC)的复合膜电导率超过Nafion115膜,并在160℃时达到0.36S.cm-1.使用温度的提高及在高温下的高电导率表明该复合膜适合在高温DMFC中使用.  相似文献   

12.
磺化聚醚醚酮膜的制备及其阻醇和质子导电性能   总被引:17,自引:0,他引:17  
直接甲醇燃料电池 (Directmethanolfuelcell,DMFC)以高效、清洁和燃料储运方便等优点适宜于作为各种用途的可移动动力源 ,成为 2 0世纪 90年代以来研究与开发的热点[1,2 ] .目前 ,这种电池的研究难点主要集中在催化剂不稳定和质子交换膜透醇上 .一张好的DMFC膜不但要可传递质子、绝缘电子 ,还应具有良好的阻醇性能 .如果膜的阻醇性能不好 ,甲醇会穿过膜到达阴极 ,与氧直接反应而不产生电流 ,不但造成燃料的浪费 ,同时也影响阴极的正常反应 ,使电池效率下降[3] .目前广泛应用于燃料电池中的Nafion系列膜…  相似文献   

13.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   

14.
本文报道了采用浓硫酸作为磺化剂,成功合成了不同磺化度下的聚醚醚酮(PEEK)膜,并深入研究了磺化条件包括磺化时间和磺化剂的用量对所获薄膜性能的影响,获得了在不同磺化度(DS)下SPPEK膜的离子交换容,含水率,机械性能,质子电导率等参数,特别测定了在全钒液流电池工作条件下钒离子(Ⅳ)渗透率,首次为该类液流储能电池使用价廉质优的质子交换膜提供了基础实验数据。室温条件下的实验结果如下:1)磺化12小时后,膜的磺化度46%,含水量为28%,钒离子(Ⅳ)选择性最佳(钒离子渗透率为1.2×10-7 cm2/min-1,是Nafion117 (2.9×10-6 cm2/min-1)的1/24),其质子电导率只有0.02 S/cm;2)磺化96小时其磺化度达79%的膜,质子电导率达0.16 S/cm,是Nafion117 (0.10S/cm) 的1.6倍, 但其机械性能最差;3)与Nafion117膜相比,磺化在36到48小时的SPPEK膜其机械力学性能好,薄膜的钒离子渗透率、离子交换容IEC、质子导电率和含水率高,且对钒离子的选择性佳,尤其价格仅为Nafion膜的1/13,是理想的Nafion膜的代替物,可望直接应用于全钒氧化还原液流(VRB)电池中。本文还讨论了磺化时间和不同磺化剂量对膜的性质的影响。  相似文献   

15.
Partially sulfonated poly(etheretherketone) (SPEEK) samples were prepared by modification of corresponding poly(etheretherketone) (PEEK) with concentrated sulfuric acid. Membranes cast from these materials were evaluated as polymer electrolytes for direct methanol fuel cells (DMFCs). SPEEK membranes were characterized by 1H NMR, FT-IR and TGA. The transverse proton conductivities increased from 4.1 to 9.3 × 10−3 S/cm with the increase of the degree of sulfonation (DS) from 0.59 to 0.93. These values were comparable with that of Nafion 117 membrane (1.0 × 10−2 S/cm) measured under the same condition. Nearly one order magnitude difference between transverse conductivity and longitudinal conductivity was found. The methanol permeabilities of the SPEEK membranes were all lower than that of Nafion 117 membrane. The effects of temperature and methanol concentration on the methanol permeability were also studied. In addition, the selectivities of the SPEEK membranes for protons and methanol were all higher than that of Nafion 117 membrane.  相似文献   

16.
通过在磺化聚醚醚酮(SPEEK,DS=61.68%)中分别混入酚酞型聚醚砜(PES-C)、磺化酚酞型聚醚砜(SPES-C,DS=53.7%)制备出SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜.结果表明,共混的两种聚合物之间均具有较好的相容性.PES-C、SPES-C的混入能有效降低膜的溶胀及甲醇透过,且随着共混量的增加,这种作用越趋明显.纯SPEEK膜在75℃左右溶解,而SPEEK/PES-C(30wt%)、SPEEK/SPES-C(30wt%)共混膜在80℃时溶胀度仅为22.5%、26.32%.在室温至80℃范围内,纯SPEEK及共混膜的甲醇透过系数都在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,温度大于90℃时,SPEEK/PES-C(20wt%)共混膜电导率超过Nafion115膜;温度大于110℃时,SPEEK/SPES-C(30wt%)共混膜电导率与Nafion115膜相当,达到0.11S.cm-1.高电导率,低透醇系数以及明显提高了的可使用温度表明该类共混膜有望在DMFC中使用.  相似文献   

17.
通过溶液流延法制备了磺化聚醚醚酮/锂皂石(SPEEK/Lap)复合膜, 对其物理化学性质、 机械性能、 化学稳定性及单电池性能进行了测试. 在SPEEK基质中引入的Lap有效改善了复合膜的质子传导率、 溶胀率和机械性能. 当Lap添加量(质量分数)从0.2%增到1.5%时, 复合膜的质子传导率随之增加(19.9~23.6 mS/cm). SPEEK/Lap-0.2复合膜的自放电时间为57.2 h, 是Nafion 117膜的2.4倍和纯SPEEK膜的1.5倍. 在80 mA/cm 2电流密度下, SPEEK/Lap-0.2复合膜的电压效率(VE, 86.5%)和能量效率(EE, 84.0%)明显高于Nafion 117膜(VE: 83.8%, EE: 80.7%)和纯SPEEK膜(VE: 81.4%, EE: 78.9%). 同时, SPEEK/Lap-0.2复合膜经100次充放电循环测试后具有良好的循环稳定性和结构稳定性.  相似文献   

18.
DMFC用PES/SPEEK共混阻醇质子交换膜   总被引:1,自引:0,他引:1  
将磺化聚醚醚酮(SPEEK, 磺化度DS为68.3%)和聚醚砜(PES)两种聚合物共混制得PES/SPEEK共混膜. DSC研究表明两种聚合物之间具有较好的相容性, 因而共混膜均匀致密, 未发生大尺度相分离. PES的混入能有效降低膜的溶胀度及甲醇透过系数. 纯SPEEK 膜40 ℃时在1 mol•L−1甲醇水溶液中溶胀度达到160%, 45 ℃时就完全溶解, 而含30%(w)PES的共混膜在80 ℃时的溶胀度仅有15%. 室温下含20%−30%(w)PES的共混膜的甲醇透过系数为1×10−7 cm2•s−1左右, 比Nafion 115膜的透过系数小一个数量级. 尽管80 ℃下30%(w)PES/SPEEK共混膜的电导率与Nafion 115膜相当, 但由于共混膜的厚度比Nafion 115膜小1/3左右, 膜电阻较小, 因而其电池性能比Nafion 115膜的好.  相似文献   

19.
新型萘酐型磺化聚酰亚胺质子交换膜的合成   总被引:2,自引:0,他引:2  
以新型磺化二胺单体, 1,4-双(4-胺基-2-磺酸基苯氧基)苯(DS-TBDA)与非磺化单体1,4′-二胺基二苯醚(ODA)、 1,4,5,8-萘四酸二酐(NTDA)为原料, 采用高温聚合法, 制备了一系列具有不同磺化度的萘酐型磺化聚酰亚胺(S-PI)质子交换膜材料, 并研究了材料性能与结构的关系. 磺化度超过33%时, 质子传导率可达到与Nafion膜同一数量级的水平, 而甲醇透过率均在2.85×10-7 cm2/s以下, 比Nafion膜低1-2个数量级. 研究结果表明, 该膜有望在直接甲醇燃料电池(DMFC)中获得应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号