首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A comparative synthesis of poly(imides) based on benzidine-2,2′-disulfonic acid and dianhydrides of pyromellitic and naphthalene-1,4,5,8-tetracarboxylic acids via the high-temperature polycyclocondensation in m-cresol in the presence of triethylamine has been performed for the purpose of designing proton-exchange membranes for fuel cells. The polymers are shown to be water-soluble with poly(naphthylimide) showing by a much higher hydrolytic stability than poly(pyromellitimide). To render poly(naphthylimide) insoluble in water, copoly(naphthylimide) has been synthesized using 4,4′-bis(4-aminophenoxy)diphehyl sulfone as a comonomer. Copoly(naphthylimides) combine solubility in organic solvents with insolubility in water. These polymers demonstrate high viscosity characteristics and excellent film-forming behavior. They combine excellent thermal stability and hydrolytic resistance with proton conductivity, which is higher than the proton conductivity of Nafion commercial membranes in wide temperature and relative conductivity ranges.  相似文献   

2.
Crystalline polymers of n-valeraldehyde, n-hexaldehyde, n-heptaldehyde, and n-octaldehyde were prepared by anionic polymerization with lithium tertiary butoxide as the initiator at low temperatures. The polymers were end-capped with acetic anhydride, and their thermal stability was studied primarily by DTG. It was found that all polymers degrade rapidly above 150°C. All polymers show a dual melting-point behavior. The first melting region, which is associated with the melting of the side chain, is 80–85°C for poly(n-valeraldehyde); 87–90°C for poly(n-hexaldehyde); 78–101°C for poly(n-heptaldehyde); and 41–69°C for poly(n-octaldehyde). Annealing and quenching of the samples showed that this melting-point region consisted of several endotherm peaks whose intensity changed according to the thermal history of the sample. Although the samples are apparently highly crystalline, the side-chain crystallinity is apparently only in the 20% range.  相似文献   

3.
The synthesis and characterization of novel tricomponent networks consisting of well‐defined poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) strands crosslinked and reinforced by poly(pentamethylcyclopentasiloxane) (PD5) domains are described. Network synthesis occurred by dissolving α,ω‐diallyl PEG and α,ω‐divinyl PDMS prepolymers in a common solvent (toluene), introducing a stoichiometric excess of pentamethylcyclopentasiloxane (D5H) to the charge, inducing the cohydrosilation of the prepolymers by Karstedt's catalyst and completing network formation by the addition of water. Water in the presence of the Pt‐based catalyst oxidizes the SiH groups of D5H to SiOH functions that immediately polycondense and bring about crosslinking. The progress of cohydrosilation and polycondensation was followed by monitoring the disappearance of the SiH and SiOH functions by Fourier transform infrared spectroscopy. Because cohydrosilation and polycondensation are essentially quantitative, overall network composition can be controlled by calculating the stoichiometry of the three network constituents. The very low quantities of extractable (sol) fractions corroborate efficient crosslinking. The networks swell in both water and hexanes. Differential scanning calorimetry showed three thermal transitions assigned, respectively, to PEG (melting temperature: 46–60 °C depending on composition), PDMS [glass‐transition temperature (Tg) = ~?121 °C], and PD5 (Tg = ~?159 °C) and indicated a phase‐separated tricomponent nanoarchitecture. The low Tg of the PD5 phase is unprecedented. The strength and elongation of PEG/PD5/PDMS networks can be controlled by overall network composition. The synthesis of networks exhibiting sufficient mechanical properties (tensile stress: 2–5 MPa, elongation: 100–800%) for various possible applications has been demonstrated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3093–3102, 2002  相似文献   

4.
Degradation of poly(methylphenylsiylene) and poly(di-n-hexylsilylene) was studied by chemical and mechanical methods at ambient and higher temperatures. Purely thermal degradation in solid state starts as a slow process at 150°C and provides soluble and insoluble products which include cyclosilanes as well as various siloxanes. Sonication at ambient temperatures leads to the mechanical degradation of high molecular weight polymers by homolytic cleavage induced by shear forces. No cyclics are formed under these conditions. Polysilanes in the presence of strong nucleophiles degrade exclusively to cyclic oligomers. Rate of this back-biting chain reaction depends on substituents at silicon atom, alkali metal, solvents, and temperature. Electrophiles degrade polysilanes to various α,ω-difunctional oligosilanes. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Phenyl-substituted poly(germanosilanes) and poly(germanocarbosilanes) have been synthesized through the Wurtz-Kipping reaction via dechlorination of mixtures of dichlorophenylsilanes (PhSi(R)Cl2, where R = H, Ph, or vinyl) with diphenyldichlorogermane in the presence of an ultradisperse sodium suspension. The polymers thus synthesized have been investigated by X-ray fluorescence analysis; FTIR and UV spectroscopy; and 1H, 13C, and 29Si NMR spectroscopy. The peak maxima in the UV spectra of the polymers dissolved in THF are in the wavelength range of 300–375 nm. Under the effect of UV irradiation with a wavelength of 320–380 nm, photoluminescence emission peaking in the range of 380–470 nm is observed. Size exclusion chromatography indicates that all the (co)polymers under examination are characterized by a narrow GPC curve and their polydispersity indexes are no larger than 1.5. According to dynamic TGA data, the weight loss of the polymers reaches 80% even at 500°C. Owing to formation of branched structures in vinyl-substituted copolymers, the GPC curves widen (the polydispersity index is ~6), while the yield of an inorganic residue at 900°C amounts to 40%.  相似文献   

6.
The thermal behaviour of three aromatic polymers, poly(3,3-dioxy-4,4-diphenylmethane) (POA), poly(2,2-m-phenylene-5,5-dibenzoxazolemethane) (PBO) and a commercial poly-(phenyleneisophthalamide) (Phenylon) was studied by thermal analysis, i.e. DSC and TG. PBO was formed by the progressive thermocyclization of POA. By transforming POA into PBO the thermal stability was increased proportionally to the degree of cyclization, due to the stiffening of the polymer chain. PBO was found to be more thermally stable than Phenylon. The activation energies of the desorption of moisture, cyclization and thermal degradation of the polymers in both nitrogen and air were determined from non-isothermal TG data.  相似文献   

7.
Polymerization conditions of di-t-butyl fumarate and di-trimethylsilyl fumarate were studied in detail. They cannot be polymerized by either anionic or coordination initiators, but radical and radiation polymerizations are successful. Characterization of poly(di-t-butyl fumarate), obtained thereby, with 1H-NMR spectrum suggests that the backbone of the chain is stiff. From analysis of thermal properties of poly(di-t-butyl fumarate), it is found to be completely converted to poly(fumaric acid) by pyrolysis around 200°C. Poly(di-trimethylsilyl fumarate), on the other hand, can be quantitatively hydrolyzed with acid to the same polyacid, too. The preliminary measurement of the dissociation behaviors of poly(fumaric acid) was done by potentiometric titration, which shows that the titration curves of poly(fumaric acid) are different from those of poly(acrylic acid) and poly(maleic acid).  相似文献   

8.
Thermogelling poly(ε-caprolactone-co-D,L -lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-D,L -lactide) and poly(ε-caprolactone-co-L -lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-L -lactide) triblock copolymers were synthesized through the ring-opening polymerization of ε-caprolactone and D,L -lactide or L -lactide in the presence of poly(ethylene glycol). The polymerization reaction was carried out in 1,3,5-trimethylbenzene with Sn(Oct)2 as the catalyst at various temperatures, and the yields were about 96%. The molecular weights and polydispersities (Mw/Mn) by gel permeation chromatography were in the ranges of 5140–6750 and 1.35–1.45, respectively. The differential scanning calorimetry results showed that the melting temperatures of the poly(ε-caprolactone) components were between 30 and 40 °C. By the subtle tuning of the chemical compositions and microstructures of these triblock copolymers, the aqueous solutions underwent sol–gel transitions as the temperature increased, with the suitable lower critical solution temperature in the range of 17–28 °C at different concentrations. Transesterification in the polymerization process generated the redistribution of sequences, which remarkably affected the sol–gel transition temperature. The amphiphilic copolymers formed micelles in aqueous solutions with a diameter of 62 nm and a critical micelle concentration of about 0.032 wt % at 20 °C. Micelles aggregated as the temperature increased, leading to gel formation. The sol–gel transition was studied, with a focus on the structure–property relationship. It is expected to have potential applications in drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4091–4099, 2007  相似文献   

9.
4-Hydroxy-5-nitrophthalimides were produced via nucleophilic aromatic substitution (NAS) of 4,5-dichloro phthalimide substituents by potassium nitrite. The use of a N-phenyl-phthalimide having a protected 4′-hydroxyl group allows concurrent deprotection and nitro reduction to amine to give the 4-hydroxy-5-amino-N-(4′-hydroxyphenyl) phthalimide. This key intermediate is the precursor to a poly (ether-imide-benzoxazole), and is the condensable monomer for a poly (ester-imide-benzoxazole). Benzoxazole monomer formation via condensation with p-fluorobenzoyl chloride afforded 2-(4′-fluorophenyl)-5,6,-N-[4′(-hydroxyphenyl) imide]-benzoxazole, which was polymerized under NAS conditions to produce a poly(ether-imide-benzoxazole) having an endothermic transition at 454°C with weight retention of 90% at 500°C in both air and nitrogen. Solution polycondensation of the 4-hydroxy-5-amino-N-(4′-hydroxyphenyl) phthalimide monomer with isophthaloyl chloride afforded a poly(ester-amide-imide) which was isolated and thermally cyclodehydrated in the solid state under vacuum to give a poly(ester-imide-benzoxazole) having 95% weight retention at 500°C in both air and nitrogen, with no detectable DSC transitions up to 500°C. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Isochronal measurements of dielectric constant and loss are made for poly(isobutyl methacrylate) (PiBMA), poly(n-butyl methacrylate) (PnBMA), poly(isopropyl methacrylate) (PiBMA), and poly(4-methylpentene-1) (P4MP1) at temperatures ranging from 4°K to 250°K. Loss peaks are found around 120°K (10–100 Hz) for PiBMA, PnBMA, and P4MP1. By comparing the activation energy with the calculated potential barrier for the internal rotation of alkyl group in the side chain, the motion responsible for the 120°K peak is concluded to be essentially the rotation of the isopropyl group as a whole for PiBMA and P4MP1 but, for PnBMA, the rotation of n-propyl group accompanied by the rotation of the end ethyl group. Multiple paths of internal rotation are involved with the 120°K peaks of PiBMA and, in particular, PnBMA, which explain differences between PiBMA and PnBMA in the broadness and the temperature location of the 120°K peak. The 120°K peak is in general assigned to a side chain including a sequence? O? C? C? C or ? C? C? C? C. PiPMA without this sequence in the side chain does not show the 120°K peak, but it exhibits the 50°K peak (1 kHz) like poly(ethyl methacrylate). The 50°K peak is assigned to the rotation of ethyl or isopropyl group attached to COO group. Poly-L-valine in which the isopropyl group is directly attached to carbon does not have the 50°K peak. An additional loss peak at 20°K (1 kHz) for P4MP1 is also discussed on the basis of the calculated potential.  相似文献   

11.
Films of poly(ethylene naphthalate) (PEN) and poly(ethylene naphthalate bibenzoate) (PENBB) have been drawn under a variety of conditions of temperature and strain rate to determine the conditions under which a nematic-like mesophase structure can be produced. In PEN the combination of low temperature and high-strain rate encourages mesophase formation, while in PENBB the mesophase was formed under all conditions where it proved possible to draw the material at all. A molecular modelling study of the mesophase in PEN and in poly(ethylene terephthalate) (PET) offers possible structures for the mesophase and showed that the mesophase structure could be stable once formed © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of the crystallization temperature on the melting behaviour and crystalline structure of polyoxetane (PTO), poly(3,3-dimethyloxetane) (PDMO) and poly(3,3-diethyloxetane) (PDEO) has been studied using differential scanning calorimetry (DSC) and X-ray techniques. When PTO is crystallized by cooling from the relaxed melt state, only the orthorhombic modification is obtained. However, PDMO and PDEO can be crystallized in two different modifications depending on crystallization temperature. The effect of the substituents in the stability of main chain conformations in crystalline state is discussed.  相似文献   

13.
Journal of Thermal Analysis and Calorimetry - To provide guidance for the practical thermal processing and applications of poly(propylene carbonate)/poly(vinyl alcohol) (PPC/PVA) blend, an...  相似文献   

14.
Here we report the preparation and characterization of nanostructured thermo-responsive poly(acrylamide) (PAM)-based hydrogels. The addition of slightly crosslinked poly(N-isopropylacrylamide) (PNIPA) nanogels to AM reactive aqueous solution produces nanostructured hydrogels that exhibit a volume phase transition temperature (TVPT). Their swelling kinetics, TVPT's and mechanical properties at the equilibrium-swollen state (Heq) are investigated as a function of the concentration of PNIPA nanogels in the nanostructured hydrogels. Nanostructured hydrogels with PNIPA nanogels/AM mass ratios of 20/80 and above exhibit higher Heq and longer time to reach the equilibrium swelling than those of the conventional PAM hydrogels. However, the PNIPA nanogels possess thermo-responsive character missing in conventional PAM hydrogels. The TVPT of nanostructured hydrogels depends on PNIPA nanogel content but their elastic and Young moduli are larger than those of conventional hydrogels at similar swelling ratios. Swelling kinetics, TVPT, and mechanical properties are explained in terms of the controlled in-homogeneities introduced by the PNIPA nanogels during the polymerization.  相似文献   

15.
Films of poly(ethylacryloylacetate) (PEAA) and poly(acryloylacetone) (PAA) were subjected to UV irradiation (λ = 254 nm) at room temperature. The photoinduced structure transfer from cis-enol onto a diketo forms has been investigated. The structure transfer caused by UV light was found to be slower than for the corresponding process in solution. The spectral investigations (UV, IR) showed reversible process of photoketonization. The results were analyzed in terms of the model for the participation of the trans-enol form in the process of the ketonization. Based on the results obtained, some general conclusions were made about the organization of the units in the polymer chain. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3683–3688, 1997  相似文献   

16.
The influence of the thermal treatment on the stability in time of the dispersion degree of films containing binary polymer mixtures, poly(vinyl chloride)/poly(methyl methacrylate), poly(vinyl chloride)/poly(vinyl acetate) and poly(vinyl acetate)/poly(methyl methacrylate), was studied by thermogravimetry and optical microscopy with phase contrast. The dispersion degree depends particularly on the composition of the polymer mixture and can be improved by thermal treatment at temperatures above the glass temperatures of both homopolymers. It seems that this thermal treatment yields exclusively metastable structures with a general tendency to phase separation in a short time after thermal treatment, the heterogeneity mixtures (as film) being more pronounced.  相似文献   

17.
Miscibility and morphology of poly(ethylene 2,6-naphthalate)/poly(trimethylene terephthalate)/poly(ether imide) (PEN/PTT/PEI) blends were investigated by using a differential scanning calorimeter (DSC), optical microscopy (OM), wide-angle X-ray diffraction (WAXD), and proton nuclear magnetic resonance (1H-NMR). In the ternary blends, OM and DSC results indicated immiscible properties for polyester-rich compositions of PEN/PTT/PEI blends, but all compositions of the ternary blends were phase homogeneous after heat treatment at 300 °C for more than 30 min. An amorphous blend with a single T g was obtained in the final state, when samples were annealed at 300 °C. Experimental results from 1H-NMR identified the production of PEN/PTT copolymers by so-called “transesterification”. The influence of transesterification on the behaviors of glass transition and crystallization was discussed in detail. Study results identified that a random copolymer promoted the miscibility of the ternary blends. The critical block lengths for both PEN and PTT hindered the formation of crystals in the ternary blends. Finally, the transesterification product of PEN/PTT blends, ENTT, was blended with PEI. The results for DSC and OM demonstrated the miscibility of the ENTT/PEI blends.  相似文献   

18.
Fibrous poly(L-lactide) (PLLA) and bicomponent PLLA/poly(ethylene glycol) mats were prepared by electrospinning and then were coated with chitosan. The presence of chitosan coating was proved by scanning electron microscopy and by fluorescence microscopy. On contact with blood, the chitosan coating led to changes in erythrocyte shape and in their aggregation. The haemostatic activity of the mats increased with increasing chitosan content. Microbiological studies against Staphylococcus aureus revealed that the chitosan coating imparts antibacterial activity to the hybrid mats. The combined haemostatic and antibacterial activities render these novel materials suitable for wound-healing applications.  相似文献   

19.
Poly(hydroxamic acid) in gel or water soluble from was prepared from the reaction of poly(acrylamide) and hydroxylamine in basic aqueous solution (pH > 12) at room temperature. The polymers were composed of 70% hydroxamic acid groups, less than 5% carboxylic acid groups, and 25% unreacted amide groups. The polymers exhibited high affinity to iron(III) and copper(II) in the pH range of 1 to 5 with a high binding rate. A binding of 3 mmol/g for both metals was achieved. Preliminary tests demonstrated the urease inhibitory activity of both linear and crosslinked poly(hydroxamic acids).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号