首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
The electron-transfer (ET) reduction of two diphenyl-substituted bicyclic endoperoxides was studied in N,N-dimethylformamide by heterogeneous electrochemical techniques. The study provides insight into the structural parameters that affect the reduction mechanism of the O-O bond and dictate the reactivity of distonic radical anions, in addition to evaluating previously unknown thermochemical parameters. Notably, the standard reduction potentials and the bond dissociation energies (BDEs) were evaluated to be -0.55+/-0.15 V and 20+/-3 kcal mol(-1), respectively, the last representing some of the lowest BDEs ever reported. The endoperoxides react by concerted dissociative electron transfer (DET) reduction of the O-O bond yielding a distonic radical-anion intermediate. The reduction of 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]oct-5-ene (1) results in the quantitative formation of 1,4-diphenylcyclohex-2-ene-cis-1,4-diol by an overall two-electron mechanism. In contrast, ET to 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]octane (2) yields 1,4-diphenylcyclohexane-cis-1,4-diol as the major product; however, in competition with the second ET from the electrode, the distonic radical anion undergoes a beta-scission fragmentation yielding 1,4-diphenyl-1,4-butanedione radical anion and ethylene in a mechanism involving less than one electron. These observations are rationalized by an unprecedented catalytic radical-anion chain mechanism, the first ever reported for a bicyclic endoperoxide. The product ratios and the efficiency of the catalytic mechanism are dependent on the electrode potential and the concentration of weak non-nucleophilic acid. A thermochemical cycle for calculating the driving force for beta-scission fragmentation is presented, and provides insight into why the fragmentation chemistry of distonic radical anions is different from analogous neutral biradicals.  相似文献   

2.
The homogeneous and heterogeneous electron transfer (ET) reduction of ascaridole (ASC) and dihydroascaridole (DASC), two bicyclic endoperoxides, chosen as convenient models of the bridged bicyclic endoperoxides found in biologically relevant systems, were studied in aprotic media by using electrochemical methods. ET is shown to follow a concerted dissociative mechanism that leads to the distonic radical anion, which is itself reduced in a second step by an overall two-electron process. The kinetics of homogeneous ET to these endoperoxides from an extensive series of radical anion electron donors were measured as a function of the driving force of electron transfer (deltaG(o)ET). The kinetics of heterogeneous ET were also studied by convolution analysis. Together, the heterogeneous and homogeneous ET kinetic data provide the best example of the parabolic nature of the activation-driving force relationship for a concerted dissociative ET described by Savéant; the data is particularly illustrative due to the low bond-dissociation enthalpy (BDE) of the O-O bond and hence small intrinsic barriers. Analysis of the data allowed the dissociative reduction potentials (E(o)diss) to be determined as -1.2 and -1.1 Vagainst SCE for ASC and DASC, respectively. Unusually low pre-exponential factors measured in temperature-dependent kinetic studies suggest that ET to these O-O bonded systems is nonadiabatic. Analysis of ET kinetics for ASC and DASC by the Savéant model with a modification for nonadiabaticity allowed the intrinsic free energy for ET to be determined. The use of this approach and estimates for the BDE provide approximations of the reorganization energies. We suggest the methodology described herein can be used to evaluate the extent of ET to other endoperoxides of biological relevance and to provide thermochemical data not otherwise available.  相似文献   

3.
Two dialkyl peroxides, devised as kinetic probes for the heterogeneous electron transfer (ET), are studied using heterogeneous and homogeneous electrochemical techniques. The peroxides react by concerted dissociative ET reduction of the O-O bond. Under heterogeneous conditions, the only products isolated are the corresponding alcohols from a two-electron reduction as has been observed with other dialkyl peroxides studied to date. However, under homogeneous conditions, a generated alkoxyl radical undergoes a rapid beta-scission fragmentation in competition with the second ET resulting in formation of acetone and a benzyl radical. With knowledge of the rate constant for fragmentation and accounting for the diffuse double layer at the electrode interface, the heterogeneous ET rate constant to the alkoxyl radicals is estimated to be 1500 cm s(-1). The heterogeneous and homogeneous ET kinetics of the O-O bond cleavage have also been measured and examined as a function of the driving force for ET, deltaG(ET), using dissociative electron transfer theory. From both sets of kinetics, besides the evaluation of thermochemical parameters, it is demonstrated that the heterogeneous and homogeneous reduction of the O-O bond appears to be non-adiabatic.  相似文献   

4.
5.
The model prostaglandin endoperoxide, 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]heptane (3), was investigated in N,N-dimethylformamide at a glassy carbon electrode using various electrochemical techniques. Reduction of 3 occurs by a concerted dissociative electron transfer (ET) mechanism. Electrolysis at -1.6 V yields 1,3-diphenyl-cyclopentane-cis-1,3-diol in 97% by a two-electron mechanism; however, in competition with the second ET from the electrode, the resulting distonic radical-anion intermediate undergoes a beta-scission fragmentation. The rate constant for the heterogeneous ET to the distonic radical-anion is estimated to occur on the order of 2 x 10(7) s(-1). In contrast, electrolyses conducted at potentials more negative than -2.1 V yield a mixture of primary and secondary electrolysis products including 1,3-diphenyl-cyclopentane-cis-1,3-diol, 1,3-diphenyl-1,3-propanedione, trans-chalcone and 1,3-diphenyl-1,3-hydroxypropane by a mechanism involving less than one electron equivalent. These observations are rationalized by a catalytic radical-anion chain mechanism, which is dependent on the electrode potential and the concentration of weak non-nucleophilic acid. A thermochemical cycle for calculating the driving force for beta-scission fragmentation from oxygen-centred biradicals and analogous distonic radical-anions is presented and the results of the calculations provide insight into the reactivity of prostaglandin endoperoxides.  相似文献   

6.
Important aspects of the electrochemical reduction of a series of substituted arene sulfonyl chlorides are investigated. An interesting autocatalytic mechanism is encountered where the starting material is reduced both at the electrode and through homogeneous electron transfer from the resulting sulfinate anion. This is due to the homogenous electron transfer from the two-electron reduction produced anion (arene sulfinate) to the parent arene sulfonyl chloride. As a result, the reduction process and hence the generated final products depend on both the concentration of the substrate and the scan rate. A change is also observed in the reductive cleavage mechanism as a function of the substituent on the phenyl ring of the arene sulfonyl chloride. With 4-cyano and 4-nitrophenyl sulfonyl chlorides a "sticky" dissociative ET mechanism takes place where a concerted ET mechanism leads to the formation of a radical/anion cluster before decomposition. With other substituents (MeO, Me, H, Cl, and F) a "classical" dissociative ET is followed, where the ET and bond cleavage are simultaneous. The dissociative electron transfer theory, as well as its extension to the case of strong in-cage interactions between the produced fragments, along with gas phase chemical quantum calculations results helped us to rationalize both the observed change in the ET mechanism and the occurrence of the "sticky" dissociative ET mechanism. The radical/anion pair interactions have been determined both in solution as well as in the gas phase. The study also shows that despite the low magnitude of in-cage interactions in acetonitrile compared to the gas phase their existence strongly affects the dynamics of the involved reactions. It also shows that, as expected, these interactions are reinforced by the existence of strong electron-withdrawing substituents. The occurrence of an autocatalytic process and the existence of the radical/anion interaction may explain the differences previously observed in the reduction of these compounds in different media.  相似文献   

7.
The quantum-chemical method B3LYP/6-311G(d,p) was used to calculate structural parameters of four conformers of 9,10-dihydroxyanthracene, two conformers of 9-hydroxyanthrone, and the corresponding anions, dianion, and radical anion. The energy of 9,10-dihydroxyanthracene in a gas phase is higher and in aqueous solution lower than the energy of 9-hydroxyanthrone. The dianion can exist exclusively in a polarizable medium.  相似文献   

8.
Important aspects of the electrochemical reduction of a series of substituted benzyl thiocyanates were investigated. A striking change in the reductive cleavage mechanism as a function of the substituent on the aryl ring of the benzyl thiocyanate was observed, and more importantly, a regioselective bond cleavage was encountered. A reductive alpha-cleavage (CH(2)-S bond) was seen for cyano and nitro-substituted benzyl thiocyanates leading to the formation of the corresponding nitro-substituted dibenzyls. With other substituents (CH(3)O, CH(3), H, Cl, and F), both the alpha (CH(2)-S) and the beta (S-CN) bonds could be cleaved as a result of an electrochemical reduction leading to the formation of the corresponding substituted monosulfides, disulfides, and toluenes. These final products are generated through either a protonation or a nucleophilic reaction of the two-electron reduction-produced anion on the parent molecule. The dissociative electron transfer theory and its extension to the formation/dissociation of radical anions, as well as its extension to the case of strong in-cage interactions between the produced fragments ("sticky" dissociative electron transfer (ET)), along with the theoretical calculation results helped rationalize (i) the observed change in the ET mechanism, (ii) the dissociation of the radical anion intermediates formed during the electrochemical reduction of the nitro-substituted benzyl thiocyanates, and more importantly (iii) the regioselective reductive bond cleavage.  相似文献   

9.
By using direct and indirect electrochemical methods, rate constants (ko) for cyclopropane ring opening of radical anions derived from the one-electron reduction of trans-1-benzoyl-2-phenylcyclopropane, trans-1-benzoyl-2-vinylcyclopropane, 2-methylenecyclopropyl phenyl ketone, spiro[anthracene-9,1'-cyclopropan-10-one], 3-cyclopropylcyclohex-2-en-1-one, and 3-(1-methylcyclopropyl)cyclohex-2-en-1-one were determined. Qualitatively, rate constants for ring opening of these (and other cyclopropyl- and cyclobutyl-containing radical anions) can be rationalized on the basis of the thermodynamic stability of the radical anion, the ability of substituents on the cyclopropyl group to stabilize the radical portion of the distonic radical anion, and the stability of the enolate portion of the distonic radical anion. On the basis of this notion, a thermochemical cycle for estimating deltaG(o) for ring opening was presented. For simple cyclopropyl-containing ketyl anions, a reasonable correlation between log(ko) and deltaG(o) was found, and stepwise dissociative electron transfer theory was applied to rationalize the results. Activation energies calculated with density functional theory (UB3LYP/6-31+G*) correlate reasonably well with measured log(ko). The derived log(ko) and deltaG(o) and log(ko) vs E(a) plots provide the basis for a "calibration curve" to predict rate constants for ring opening of radical anions derived from carbonyl compounds, in general.  相似文献   

10.
The electron-acceptor properties of series of related sulfides and disulfides were investigated in N,N-dimethylformamide with homogeneous (redox catalysis) and/or heterogeneous (cyclic voltammetry and convolution analysis) electrochemical techniques. The electron-transfer rate constants were determined as a function of the reaction free energy and the corresponding intrinsic barriers were determined. The dependence of relevant thermodynamic and kinetic parameters on substituents was assessed. The kinetic data were also analyzed in relation to corresponding data pertaining to reduction of diaryl disulfides. All investigated reductions take place by stepwise dissociative electron transfer (DET) which causes cleavage of the C(alkyl)--S or S--S bond. A generalized picture of how the intrinsic electron-transfer barrier depends on molecular features, ring substituents, and the presence of spacers between the frangible bond and aromatic groups was established. The reduction mechanism was found to undergo a progressive (and now predictable) transition between common stepwise DET and DET proceeding through formation of loose radical anions. The intrinsic barriers were compared with available results for ET to several classes of dissociative- and nondissociative-type acceptors, and this led to verification that the heterogeneous and the homogeneous data correlate as predicted by the Hush theory.  相似文献   

11.
本文在均相有机体系和非均相胶束体系中用ESR、自旋捕捉、消自旋等技术研究了竹红菌甲素(HA)和尾孢素(CP)的光敏特征;测量了其光动力作用过程中1O2、负离子自由基和O2·-的相对产率,发现均相体系中HA的光敏活性略高于CP。这表明侧环对醌类光敏剂的光敏活性影响不大。在非均相体系中由于胶束对HA激发态较强的保护作用,HA的光敏活性显著地强于CP。  相似文献   

12.
A four-step mechanism of isomerization of tricyclo[4.3.0.03,7]nona-4,8-diene radical cations to tricyclo[4.2.1.04,9]nona-2,7-diene radical cations in γ-irradiated frozen Freon-113 (CFCl2CF2Cl) matrix was suggested on the basis of ESR data. The rearrangement was found to occur via distonic form of the radical cations with spin and charge separation. Furthermore, it was shown that the primary radical cations abstracts hydrogen atom from methylene group of the parent molecule, whereas distonic radical cations reacts via attachment to the C=C bond at 110–119 K.  相似文献   

13.
Important aspects of the electrochemical reduction of a series of substituted arene sulfenyl chlorides are investigated. A striking change is observed in the reductive cleavage mechanism as a function of the substituent on the aryl ring of the arene sulfenyl chloride. With p-substituted phenyl chlorides a "sticky" dissociative ET mechanism takes place where a concerted ET mechanism leads to the formation of a radical/anion cluster before decomposition. With o-nitropheyl sulfenyl substituted chlorides a stepwise mechanism is observed where through space S...O interactions play an important role stabilizing both the neutral molecules and their reduced forms. Disulfides are generated through a nucleophilic reaction of the two-electron reduction produced anion (arenethiolate) on the parent molecule. The dissociative electron transfer theory, as well as its extension to the case of strong in-cage interactions between the produced fragments, along with the gas phase chemical quantum calculations results helped rationalize both the observed change in the ET mechanism and the occurrence of the "sticky dissociative" ET mechanism. The radical/anion pair interactions have been determined both in solution as well as in gas phase. This study shows that despite the low magnitude of in-cage interactions in acetonitrile as compared to in the gas phase, their existence strongly affects the kinetics of the involved reactions. It also shows that, as expected, these interactions are reinforced by the existence of strong electron-withdrawing substituents.  相似文献   

14.
Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.  相似文献   

15.
Electron transfer to 3,3,6,6-tetraphenyl-1,2-dioxane results in the cleavage of the oxygen-oxygen bond, generating a distonic radical anion intermediate whose fragmentation initiates an unprecedented radical anion chain process in competition with a second electron transfer.  相似文献   

16.
Gamma-radiolysis and measurements of halide ions by means of ion chromatography have been employed to investigate reductive dehalogenation of chloro-, bromo-, and iodophenols by carbon-centered radicals, *CH(CH(3))OH, *CH(2)OH, and *CO(2)-, in oxygen-free aqueous solutions in the presence of ethanol, methanol, or sodium formate. While the reactions of 4-IC(6)H(4)OH with *CH(CH(3))OH and *CH(2)OH radicals are endothermic in water/alcohol solutions, the addition of bicarbonate leads to iodide production in high yields, indicative of a chain reaction. The maximum effect has been observed with about 10 mM sodium bicarbonate present. The complex formed from an alpha-hydroxyalkyl radical and a bicarbonate anion is considered to cause the enhancement of the reduction power of the former to the extent at which the reduction of the iodophenol molecule becomes exothermic. No such effect has been observed with phosphate, which is a buffer with higher proton affinity, when added in the concentration of up to 20 mM at pH 7. This indicates that one-electron reduction reactions by alpha-hydroxyalkyl radicals occur by the concerted proton-coupled electron transfer, PCET, and not by a two-step ET/PT or PT/ET mechanisms. The reason for the negative results with phosphate buffer could be thus ascribed to a less stable complex or to the formation of a complex with a less suitable structure for an adequate support to reduce iodophenol. The reduction power of the carbonate radical anion is shown to be high enough to reduce iodophenols by a one-electron-transfer mechanism. In the presence of formate ions as H-atom donors, the dehalogenation also occurs by a chain reaction. In all systems, the chain lengths depend on the rate of reducing radical reproduction in the propagation step, that is, on the rate of H-atom abstraction from methanol, ethanol, or formate by 4-*C(6)H(4)OH radicals liberated after iodophenol dehalogenation. The rate constants of those reactions were determined from the iodide yield measurements at a constant irradiation dose rate. They were estimated to be 6 M(-1)(s-1) for methanol, 140 M(-1)(s-1) for ethanol, and 2100 M(-1)(s-1) for formate. Neither of the tested reducing C-centered radicals was able to dehalogenate the bromo or chloro derivative of phenol.  相似文献   

17.
Thermolyses of seven dialkyl, two alkyl-aryl and two diaryl O-benzyl ketoxime ethers, R(1)R(2)C[double bond, length as m-dash]NOCH(2)Ph, have been examined in three hydrogen donor solvents: tetralin, 9,10-dihydrophenanthrene, and 9,10-dihydroanthracene. All the oxime ethers gave the products expected from homolytic scission of both the O-C bond (viz., R(1)R(2)C[double bond, length as m-dash]NOH and PhCH(3)) and N-O bond (viz., R(1)R(2)C[double bond, length as m-dash]NH and PhCH(2)OH). The yields of these products depended on which solvent was used and the rates of decomposition of the O-benzyl oxime ethers were greater in 9,10-dihydrophenanthrene and 9,10-dihydroanthracene than in tetralin. These results indicated that a reverse radical disproportionation reaction in which a hydrogen atom was transferred from the solvent to the oxime ether, followed by [small beta]-scission of the resultant aminoalkyl radical, must be important in the latter two solvents. Benzaldehyde was found to be an additional product from thermolyses conducted in tetralin. This, and other evidence, indicated that another induced decomposition mode involving abstraction of a benzylic hydrogen atom, followed by [small beta]-scission of the resulting benzyl radical, became important for some substrates. Participation by minor amounts of enamine tautomers of the oxime ethers was shown to be negligible by comparison of thermolysis data for the O-benzyloxime of bicyclo[3.3.1]nonan-9-one, which cannot give an enamine tautomer, with that of the O-benzyloxime of cyclohexanone.  相似文献   

18.
Preliminary results from a liquid nitrogen-cooled ion mobility (IM) orthogonal-time-of-flight (o-ToF) mass spectrometer applied to the separation of electronic isomers of Kr2+ and methanol radical cations (conventional and distonic) are presented. Ab initio calculations were used to estimate the energies and energy barriers to interconversion between conventional (CH3OH*+) and distonic (CH2*OH2+) radical cations. In addition, computations and experiments are used to compare ion-neutral collision cross-sections for CH3OH*+ and CH2*OH2+ radical cations and suggest that the mobility separation is achieved by ion-neutral interactions between ions and neutral buffer gas.  相似文献   

19.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

20.
Semiquinone radical anion of 1-(p-tolylsulfinyl)-2,5-benzoquinone (TolSQ(*-)) forms a strong hydrogen bond with protonated histidine (TolSQ(*-)/His x 2 H(+)), which was successfully detected by electron spin resonance. Strong hydrogen bonding between TolSQ(*-) and His x 2 H(+) results in acceleration of electron transfer (ET) from ferrocenes [R2Fc, R = C5H5, C5H4(n-Bu), C5H4Me] to TolSQ, when the one-electron reduction potential of TolSQ is largely shifted to the positive direction in the presence of His x 2 H(+). The rates of His x 2 H(+)-promoted ET from R2Fc to TolSQ exhibit deuterium kinetic isotope effects due to partial dissociation of the N-H bond in His x 2 H(+) at the transition state, when His x 2 H(+) is replaced by the deuterated compound (His x 2 D(+)-d6). The observed deuterium kinetic isotope effect (kH/kD) decreases continuously with increasing the driving force of ET to approach kH/kD = 1.0. On the other hand, His x 2 H(+) also promotes a hydride reduction of TolSQ by an NADH analogue, 9,10-dihydro-10-methylacridine (AcrH2). The hydride reduction proceeds via the one-step hydride-transfer pathway. In such a case, a large deuterium kinetic isotope effect is observed in the rate of the hydride transfer, when AcrH2 is replaced by the dideuterated compound (AcrD2). In sharp contrast to this, no deuterium kinetic isotope effect is observed, when His x 2 H(+) is replaced by His x 2 D(+)-d6. On the other hand, direct protonation of TolSQ and 9,10-phenanthrenequinone (PQ) also results in efficient reductions of TolSQH(+) and PQH(+) by AcrH2, respectively. In this case, however, the hydride-transfer reactions occur via the ET pathway, that is, ET from AcrH2 to TolSQH(+) and PQH(+) occurs in preference to direct hydride transfer from AcrH2 to TolSQH(+) and PQH(+), respectively. The AcrH2(*+) produced by the ET oxidation of AcrH2 by TolSQH(+) and PQH(+) was directly detected by using a stopped-flow technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号