首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
In the present investigation, a fresh water green algae spirogyra is used as an inexpensive and efficient mild steel corrosion inhibitor. The study is carried out in 0.5?M HCl solution using weight loss measurements, scanning electron microscopy–energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transforms infrared (FT-IR) techniques. The maximum inhibition efficiency was found to be 93.03% at 2?g?L?1. The adsorption of extract of spirogyra on mild steel surface obeys the Langmuir adsorption isotherm. Corrosion inhibition mechanisms were inferred from the temperature dependence of the inhibition efficiency as well as from calculation of thermodynamic and kinetic parameters which direct the process. FT-IR analysis of green algae spirogyra revealed the presence of hydroxyl, amino, and carbonyl groups, which are responsible for the adsorption on the mild steel surface. SEM analysis supported the inhibitive action of the spirogyra extract against the mild steel corrosion in acid solution.  相似文献   

2.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

3.
7-Cchloro-3-(4-methoxystyryl)quinoxalin-2(1H)-one (CMOSQ) and 7-chloro-2-(4-methoxyphenyl)thieno(3.2-b)quinoxaline (CMOPTQ) have been investigated for mild steel corrosion in 1 M HCl at different concentrations using weight loss measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy methods. Generally, inhibition efficiency of the investigated compounds was found to depend on inhibitor concentration and their structures. Comparitive results showed that CMOPTQ was the best inhibitor and the inhibition efficiency increased with increasing the concentration and attained 86 and 87 % at 10?3 M of CMOPTQ and 10?3 M of CMOSQ, respectively. Potentiodynamic polarization studies clearly reveal that these inhibitors act essentially as cathodic-type inhibitors. The inhibition efficiency increases with immersion time and reaches 95 % CMOPTQ at 24 h. The electrochemical impedance spectroscopy result showed that these compounds act by formation of film.  相似文献   

4.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

5.
《印度化学会志》2021,98(12):100245
The corrosion inhibition effect of newly formulated Schiff base 2-((E)-((E)-2-hydrazone-1, 2-diphenylethylidene) amino phenol) (HDAP) ligand L derived from Benzil monohydrazone and 2-Aminophenol on mild steel in 1 ​M HCl was examined. Electrochemical (Tafel and EIS) and mass loss techniques were employed to evaluate its corrosion protection efficiency. The inhibition efficiency (η %) was elevated with raise in concentration of compound L.Maximum inhibition efficiency of 94.18% was obtained at 0.01 ​M concentration of HDAP from Tafel polarisation curve. From electrochemical impedance (EIS) studies, it was confirmed that increase in concentration of HDAP led to enhancement of the charge transfer resistance. Both physical and chemical types of adsorptions were observed for the Schiff base via π-bonding electrons which obey Langmuir adsorption isotherm. The SEM picture revealed development of a thin layer on metallic surface. Quantum chemical evaluations were conducted to find out the mechanism of corrosion retardation power of HDAP.  相似文献   

6.
3-(4-hydroxybutyl)-1-phenethyl-1H-imidazol-3-ium chloride ([HB-Imid] Cl), and 3-(2-chlorobenzyl)-1-phenethyl-1H-imidazol-3-ium chloride ([CB-Imid] Cl) were investigated as corrosion inhibitors for mild steel in 1.0 M hydrochloric acid solution. Electrochemical techniques (PDP and EIS) were performed as experimental studies while DFT at B3LYP 6-311G (df,pd), and molecular dynamic simulation were used as theoretical approach. PDP experiments revealed that the studied ionic liquids (ILs) behaved as mixture type inhibitors. EIS results indicated that these compounds showed good inhibition performance with inhibition efficiency around 95% at the optimum concentration of 1.0 × 10?3 M. According to Langmuir isotherm model and the thermodynamic parameters, these ILs were adsorbed onto the mild steel surface through physical and chemical bonds. SEM and EDX examinations proved the formation of a protective layer of adsorbed inhibitors at the steel surface. The DFT/B3LYP/6-311G(df,pd) computations in both the gas and water environments disclosed that [HB-Imid] Cl molecule was softer and had a lower energy gap, electrodonating power, and polarizability indexes.  相似文献   

7.
《印度化学会志》2021,98(9):100121
A novel heterocyclic compound 2-(Furan-2-yl)-4,5-Diphenyl-1H-Imidazole (FDPI) was synthesized by a simple and cost effective one pot synthetic protocol and the structure of FDPI was confirmed by FT-IR, 1H NMR and 13C NMR spectra. The corrosion inhibition activity of FDPI was investigated using gravimetric and electrochemical methods. It resulted a maximum inhibition efficiency of 95.84% at 10 mmolL−1 concentrations of FDPI. The excellent inhibition efficiency is reasoned as the adsorption of FDPI on the mild steel surface as a protective layer immersed in the 1 ​M HCl. The adsorbed layer obeys Langmuir adsorption isotherm and the ΔGoads values of FDPI suggested that process involves physisorption. The polarization curves showed that the FDPI behaves as a mixed type inhibitor. Surface morphology studied by SEM confirmed the formation of a protective film of FDPI on the mild steel surface. The computational studies using DFT have been analyzed for the FDPI to determine the HOMO-LUMO energy gap.  相似文献   

8.
In this work, the development of the eco-friendly comprehensive scale and corrosion inhibitor based on green polyaspartic acid (PASP) was presented. In this view, PASPG was prepared by a ring-opening graft modification reaction of polysuccinimide (PSI) with glycidyl. In addition, the molecular structure and the thermal stability of PASPG were characterized by using three different methods (FTIR, 1H NMR, and TGA). PASPG’s scale inhibition efficiency and corrosion inhibition efficiency were also evaluated, respectively. More concretely, the scale inhibition efficiency of PASPG achieved 94.6 % and 95.1 % for CaCO3 and CaSO4, respectively. With the aid of the FTIR and SEM measurement techniques, it was found that PASPG could induce the irregular growth of the CaCO3 and CaSO4 morphology and destroy the formation of crystals. On the other hand, the higher corrosion efficiency of 85.17 % was achieved by PASPG in comparison with PASP (72.53 %). PASPG is a mixed inhibitor and the adsorption of PASPG on the Q235 steel surface followed the Langmuir mono-layer adsorption isotherm. The formation of a protective film on the surface of carbon steel was proved by PASPG’s adsorption, which increased the resistance to be eroded. Thus, the surface of carbon steel can be effectively protected. The present work provides a simple and effective pathway for the synthesis of high-efficiency green scale and corrosion inhibitor, by introducing a functional group into the PASP chains. The implementation of such type of chemical modification method may also be an effective strategy for improving the efficiency of other polymers green scale and corrosion inhibitors.  相似文献   

9.
The inhibiting behavior of Nile Blue and Indigo Carmine organic dyes on mild steel corrosion was evaluated in 1 M HCl solution, separately, by weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques. Results show that the inhibition efficiency (%IE) increases with the increasing concentration of Indigo Carmine up to 9.65 × 10−05 M (%IE ~ 98) and Nile Blue up to 1.08 × 10−04 (%IE ~ 75–80). Good agreement was found between the results obtained from the different techniques used. Polarization curves indicate that the inhibition of the both inhibitors is of a mixed anodic–cathodic nature, and Langmuir isotherm is found to be an accurate isotherm describing the adsorption behavior. The inhibition mechanism of the inhibitors involves chemisorption interaction between the inhibitor and the mild steel. The inhibition efficiency for both inhibitors decreased by the rising temperature in the range of 25–55 °C, and these results verified the chemisorption behavior of both the inhibitors.  相似文献   

10.
The inhibiting effect of (NE)-4-phenoxy-N-(3-phenylallylidene) aniline (PAC) on the corrosion of mild steel in 1.0 M HCl has been studied by electrochemical impedance spectroscopy, and Tafel polarization measurements. The corrosion rate was also calculated theoretically in terms of mm per year and mil per year, using current density values of mild steel in 1.0 M HCl medium. It was found that PAC has a remarkable inhibition efficiency on the corrosion of mild steel especially at high temperatures. The values of E a obtained in presence of a Schiff base were found to be lower than those obtained in the inhibitor-free solution. The increase of inhibition efficiency percent with temperature increase was associated with the transformation of physical adsorption into chemical adsorption. The thermodynamic functions of adsorption processes have been evaluated and discussed at each temperature. Scanning electron microscope observations of the electrode surface confirmed the existence of a protective adsorbed film of the inhibitor on the electrode surface.  相似文献   

11.
The inhibitive effect of 2-cyano-3-hydroxy-4(Ar)-5-anilino thiophene derivatives on the corrosion of 304 stainless steel (SS) in 3 M HCl solution has been investigated by weight loss, galvanostatic polarization techniques, and potentiodynamic anodic polarization in 3.5 % NaCl. The results indicate that these compounds act as inhibitors retarding the anodic and cathodic corrosion reactions. The presence of inhibitors does not change the mechanism of either hydrogen evolution reaction or SS dissolution. The activation energy and some thermodynamic parameters are calculated and discussed. These compounds are mixed-type inhibitors in the acid solution, and their adsorption on the SS surface is found to obey the Temkin adsorption isotherm. The results suggest that the percentage inhibition of these thiophene derivatives increases with increasing inhibitor concentration and decreases with increasing temperature. The synergistic parameter (S) was calculated and found to have a value greater than unity, indicating that the enhanced inhibition efficiency caused by the addition of I?, SCN?, and Br? is only due to a synergistic effect. The relationship between molecular structure and inhibition efficiency was elucidated by quantum-chemical calculations using semi-empirical self-consistent field (SCF) methods.  相似文献   

12.
Imidazole derivatives, namely, 1-((1-(piperazinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (PBIP), and 1-((1-(morpholinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (MBIP) were synthesized and investigated as inhibitors for mild steel corrosion in 15% HCl solution using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. It was found that the inhibition efficiency of both the inhibitors increases with increase in concentration of inhibitors and decreases with increase in temperature. The inhibitors, PBIP and MBIP, show corrosion inhibition efficiency of 92.6% and 91.4% at 300 ppm concentration, respectively, at 303 K. Polarization studies showed that both the studied inhibitors were of mixed type in nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for surface study of uninhibited and inhibited mild steel samples. The semi-empirical AM1 method was employed for theoretical calculations.  相似文献   

13.
Herein, 2-ethyl phenyl-2,5-dithiohydrazodicarbonamide (2EPDCA) was synthesised and tested as a corrosion inhibitor for mild steel (MS) and copper (Cu) in 1 M HCl and 3.5% NaCl, respectively. Fourier transform infrared spectroscopy (FT-IR) and (NMR) nuclear magnetic resonance (1H, 13C) were used to identify the chemical structure. Both experimental and computational approaches have been conducted to evaluate inhibitor efficiency on both metal systems. The electrochemical results showed that the 2EPDCA inhibition efficiency for MS systems was 95% at 1 × 10?2 M, while in copper systems it was 97.5% at 1 × 10?2 M. The Langmuir adsorption isotherm was fitted using adsorption surface coverage data, and for inhibitor in both systems, the kind of adsorption was mixed (physisorption and chemisorption). Through scanning electron microscopy (SEM), EDX, and atomic force microscopy (AFM) tests, we have confirmed the presence of the inhibitor molecules on the metal surface in both systems. Quantum chemistry simulations indicate that the superior corrosion inhibition efficacy of 2EPDCA on copper compared to mild steel surfaces is attributable to the former's greater electron donating propensity on copper. The adsorption of 2EPDCA molecules on Fe (110) and Cu (111) surfaces was further verified by molecular dynamic simulations, with the former having a greater adsorption energy. The results indicate that the corrosion inhibitor was effective even in harsh conditions, and it can be thought of as a novel corrosion inhibitor for mild steel and copper that provides good protection.  相似文献   

14.
The inhibition and adsorption behavior of 2-undecyl-1-sodium ethanoate-imidazoline salt (2M2) and thiourea (TU) on N80 mild steel in CO2-saturated 3 wt.% NaCl solutions was studied at 25?°C, pH 4, and 1 bar CO2 partial pressure using electrochemical methods. It was found that inhibition efficiency (η%) increased with increase in 2M2 concentration but decreased with increase in TU concentration with optimum η% value at 20 mg l?1 TU. The data suggest that the compounds functioned via a mixed-inhibitor mechanism. The inhibition process is attributed to the formation of an adsorbed film of 2M2 and TU via the inhibitors polycentric adsorption sites on the metal surface which protects the metal against corrosion. A synergistic effect was observed between TU and 2M2. Potential of unpolarizability, E u, was observed in the presence of 100 mg l?1 TU which was shifted positively in the presence of 2M2–100 mg l–1 TU blends, which suggests that the presence of 2M2 stabilized the adsorption of TU molecules on the surface of the metal. The adsorption characteristics of 2M2 were approximated by Langmuir adsorption isotherm.  相似文献   

15.
The effects of the molecular structure on the corrosion inhibition efficiency are investigated by nine methods of calculations. The selected thio compounds were previously identified as corrosion inhibitors for mild steel in the 1.0 M HCl solution. The electronic properties such as highest occupied molecular orbital (EHOMO) energy, lowest unoccupied molecular orbital (ELUMO) energy, dipole moment (μ), and Fukui indices are calculated and discussed. Results show that the corrosion inhibition efficiency increase with the increase in both EHOMO and μ values, respectively, and decrease in ELUMO. QSAR approach is utilized in this study; a good relationship is found between the experimental corrosion inhibition efficiency (IEexp, %) and the theoretical corrosion inhibition efficiency (IEtheor, %). The calculated inhibition efficiency is found closer to the experimental inhibition efficiency with a coefficient of correlation (R 2) of 0.875.  相似文献   

16.
《印度化学会志》2023,100(1):100834
Corrosion of metals is a serious industrial problem due to its impact on economic losses and irresistible structural damage. In this work, dibenzalacetone derivatives 1, 5-bis (2-nitrophenyl)-1, 4- pentadien -3-one (BPDO) are employed as controlling agents on mild steel in 1 M H2SO4. The effect of BPDO on reducing corrosion of mild steel was analyzed using electrochemical and non-electrochemical methods. From experimental results, it is proved that the protection efficiency increases with enhance in BPDO concentration and diminishes with enlarge in temperature. BPDO is an effective corrosion inhibitor with a 98.64% inhibition efficiency at only 300 ppm concentration. IE diminishes as exposure time increases due to a decrease in the stability of the adsorbed BPDO on the metal surface. The results of Tafel polarization measurements revealed that BPDO acts as a mixed type inhibitor. In both the polarization and Electrochemical Impedance tests, 308K and 300 ppm of BPDO were used, yielding maximal inhibition efficiencies of 98.41% and 97.57% respectively. Langmuir adsorption isotherm is found to be the most suitable way to explain the adsorption of BPDO on the surface of mild steel. Physisorption is proposed from the values of ΔGads. Formation of a protective layer on mild steel surface was affirmed by various spectroscopic studies.  相似文献   

17.
In this study, a novel green corrosion inhibitor called 2,2'-((1Z,1′Z)-((piperazine-1,4-diylbis(2,1-phenylene))bis(methanylylidene))bis(azanylylidene)) (PMA) has been tested against corrosion of carbon steel in 0.5 M H2SO4. Quantum and electrochemical methods were used to evaluate PMA's ability to inhibit the deterioration of carbon steel in an acidic environment. The results revealed that PMA acted as a mixed inhibitor, primarily anodic, whose inhibition action was enhanced by increasing its concentration. At 298.15 K, the maximum efficiency was around 91% with 1 × 10?3 M PMA in 0.5 M H2SO4. The results showed that the inhibition occurred due to adsorption of the PMA molecules on the surface. The adsorbed layer of PMA satisfied the Langmuir adsorption isotherm. The morphology of the surface was examined using scanning electron microscopy.  相似文献   

18.
Two pyrimidine-pyrazole derivatives have been investigated as corrosion inhibitors for mild steel in acidic medium using weight loss measurement, polarization curve and electrochemical impedance spectroscopy (EIS). The results obtained reveal that these compounds perform as corrosion inhibitors for mild steel in 1 M HCl. The values of inhibition efficiency calculated from three experimental techniques are reasonably in good agreement. The adsorption process of these compounds on surface of mild steel obeys to El Awady isotherm. Also, the adsorption process of inhibitors studied explaining by surface analysis (EDX). This work followed by in silico approach studies. Firstly, we used Marvinsketch.18 program in order to detect predominant form of inhibitors in electrolytic solution and then computed by Gaussian 09 based on the DFT method at B3LYP/6-31G (d,p).The results obtained theoretically are in good correlation with those obtained experimentally.  相似文献   

19.
The present study examines the effect of fexofenadine, an antihistamine drug, on corrosion inhibition of mild steel in molar hydrochloric acid solution using different techniques under the influence of various experimental conditions. Results revealed that fexofenadine is an effective inhibitor and percent inhibition efficiency increased with its concentration; reaching a maximum value of 97% at a concentration of 3.0 × 10−4 M. Fourier-transform infrared spectroscopy (FTIR) observations of steel surface confirmed the protective role of the studied drug. Polarization studies showed that fexofenadine is a mixed-type inhibitor. The adsorption of the inhibitor on mild steel surface obeyed the Langmuir adsorption isotherm with free energy of adsorption (∆G°ads) of −40 kJ mol−1. Energy gaps for the interactions between mild steel surface and fexofenadine molecule were found to be close to each other showing that fexofenadine has the capacity to behave as both electron donor and electron acceptor. The results obtained from the different corrosion evaluation techniques are in good agreement.  相似文献   

20.
Plant extracts are currently being used as eco-friendly corrosion inhibitors. In this study, the inhibitive performance of Xylocarpus Moluccensis extract (XME) was used as an eco-friendly corrosion inhibitor for the first time. The extract was studied using electrochemical measurement on mild steel in 1M HCl. Results from FIR and phytochemical confirmed that Xylocarpus Moluccensis extract contains compound hydroxyl group, phenolic, and flavonoid content which can be used as a corrosion inhibitor. The inhibition efficiency was determined using Tafel polarization and electrochemical impedance spectroscopy and showed 68% efficiency in 500 ppm. Langmuir adsorption isotherm was used to determine the adsorption mechanism of XME. Surface characterization (AFM) was also used to study the surface morphology of protective film inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号