首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
杨云  张卓旻  李攻科 《色谱》2002,20(5):390-394
 建立了微波辅助萃取 (MAE) /气相 质谱联用法 (GC MS)测定蔬菜样品中二嗪磷、对硫磷、水胺硫磷的分析方法 ,研究了不同溶剂的萃取效率。选择二氯甲烷为萃取溶剂 ,采用二因素三水平的正交设计实验优化了萃取溶剂体积和萃取时间。方法的线性范围分别为二嗪磷和对硫磷 4ng/ g~ 40 0ng/ g、水胺硫磷 2 0ng/ g~ 40 0ng/ g,检出限分别为二嗪磷 0 2 9ng/g、对硫磷 1 70ng/g、水胺硫磷 2 30ng/g。测定 2 0 0 0ng/g和 50 0ng/g加标蔬菜样品 ,回收率为 72 2 %~ 1 0 2 0 % ,RSD为 1 5 %~ 1 1 0 %。。  相似文献   

2.
非平衡固相微萃取联用气相色谱测定蔬菜中残留有机磷   总被引:2,自引:1,他引:1  
建立了非平衡固相微萃取与气相色谱联用测定蔬菜中残留有机磷农药的方法。探讨了影响SPME萃取效果的纤维涂层、搅拌类型、离子强度、萃取时间等因素,并对蔬菜样品的预处理进行了研究。该方法检出限分别为乙硫磷7.5 ng/g;甲拌磷2.5 ng/g;二嗪农5.0 ng/g;异硫磷5.0 ng/g;对硫磷8.3 ng/g。线性范围为0.005~1μg/mL(相关系数r=0.9968);回收率为77.6%~91.6%;相对标准偏差(RSD)为0.97%~9.0%。  相似文献   

3.
研究了固相微萃取(SPME) 气相色谱 质谱联用(GC MS)同时测定环境水样中二嗪农、甲基对硫磷、对硫磷和水胺硫磷4种有机磷农药(OPPs)的分析方法。选择聚丙烯酸酯(PA)萃取纤维,对SPME的条件如萃取时间、萃取溶液的pH值和离子强度、解吸温度、解吸时间和GC MS的条件进行了优化。对二嗪农和水胺硫磷方法线性范围为0.001~10μg L,对甲基对硫磷和对硫磷方法线性范围为0.001~100μg L。二嗪农、甲基对硫磷、对硫磷、水胺硫磷的检出限分别为0.015,0.020,0.013和0.039μg L。分析加标自来水、矿泉水和湖水样品,回收率在89.0%~102%之间,RSD在2.1%~14.1%之间。适合于环境水样中痕量OPPs的快速分析。  相似文献   

4.
研究了微波辅助萃取(MAE)-固相微萃取(SPME)联合萃取、气相色谱-质谱法(GC-MS)测定土壤中水胺硫磷的分析方法;采用正交设计试验优化了微波升温程序、萃取温度、萃取时间、萃取溶剂体积等MAE条件;研究了SPME萃取涂层、萃取时间、解吸温度等对萃取效率的影响;方法的线性范围在1.O~20μg/L之间,检出限为O.49ng/g;测定25、100ng/g加标土壤样品,回收率分别为79%和107%。RSD分别为2.6%和6.5%;方法综合了MAE快速高效和SPME富集浓缩的优点,以水为萃取溶剂,特别适合于固体样品中痕量有机物的分析。  相似文献   

5.
微波辅助萃取气相色谱-质谱联用测定蔬菜中的扑草净   总被引:4,自引:0,他引:4  
研究了微波辅助萃取气相色谱.质谱联用测定植物样品中扑草净的方法,比较了几种不同溶剂的微波萃取效率,从而选取二氯甲烷为萃取溶剂,并采用三因素三水平的正交设计试验对溶剂体积、微波辐射时间、微波功率进行了优化。在优化的实验条件下分析了合成菠菜样品,对0.2μg/g和0.02μg/g的合成菠菜样品,回收率分别为99.5%和92.5%,相对标准偏差分别为5.0%和ll%,方法的线性范围为1.0—400ng/g,检出限为0.22ng/g。方法适合于分析植物样品中的扑草净。  相似文献   

6.
固相萃取-高效液相色谱联用分析蔬菜中5种有机磷   总被引:3,自引:1,他引:2  
建立了固相萃取(SPE)-高效液相色谱(HPLC)联用测定蔬菜中甲基对硫磷、三唑磷、乙基对硫磷、倍硫磷和辛硫磷的分析方法.采用自制Florisil SPE柱,优化了萃取溶剂、SPE柱填料类型、SPE柱填料用量和SPE淋洗溶剂等前处理条件以及HPLC仪器条件.方法线性范围为0.02~2.00μg/L;检出限介于0.10~0.17μg/g.分析加标实际样品,回收率为76.5%~109.0%,RSD为2.1%~8.0%.方法完全符合蔬菜中痕量有机磷农药残留的快速分析要求.  相似文献   

7.
经粉碎后的土豆样品用水超声提取,取滤液以正辛醇为萃取溶剂进行动态液相微萃取处理,对样品中3种有机磷农药敌敌畏、甲基对硫磷和对硫磷进行富集分离。气相色谱法测定时采用OV-1701毛细管色谱柱分离和火焰光度检测器测定。3种农药的线性范围均在2.0~50.0μg·g-1之间,检出限(3S/N)依次为0.20,0.46,0.42μg·g-1。以土豆样品作基体,用标准加入法做回收试验,测得回收率在90.6%~101%之间,相对标准偏差(n=7)在3.2%~5.6%之间。  相似文献   

8.
气相色谱-火焰光度法测定土壤中有机磷农药残留   总被引:1,自引:0,他引:1  
建立了气相色谱-火焰光度(GC-FPD)分析土壤中敌敌畏、氧化乐果、二嗪农、乐果、甲基对硫磷、马拉硫磷、对硫磷、水胺硫磷、喹硫磷等9种有机磷农药残留量的方法。样品用丙酮-二氯甲烷(1:3)提取,浓缩、定容后用Hp-5MS(30m×0.25 mm×0.25μm)毛细管柱分离,FPD检测器检测。方法回收率在68.71%~110.39%之间;RSD在5.5%~11%之间;检出限在0.397~1.60μg/mL之间,方法可用于环境土壤样品中有机磷农药残留的测定。  相似文献   

9.
应用超声波辅助萃取技术,联合固相萃取及高效液相色谱-电喷雾串联质谱(HPLC-ESI-MS/MS)技术建立了典型废水和活性污泥中4种大环内酯类抗生素(MLs)的高灵敏分析方法。水样经Oasis HLB萃取小柱富集、净化后以甲醇洗脱;活性污泥样品以乙腈-磷酸盐缓冲溶液为溶剂超声萃取、富集、净化。采用HPLC-ESI-MS/MS进行定量分析;流动相为乙腈-乙酸铵水溶液,采用电喷雾正电离源和选择性反应监测模式进行检测。结果表明,4种抗生素的线性范围为0.1~100μg·L-1,相关系数均大于0.99,方法检出限为0.002~0.019 pg,废水和活性污泥样品中MLs的平均回收率分别为70.2%~90.6%和75.6%~88.7%,方法检出限分别为0.013~0.025 ng·L-1和0.09~0.22 ng.g-1。将建立的方法应用于新疆石河子市可能的抗生素污染源典型废水和活性污泥样品中4种MLs的检测,结果表明,MLs普遍存在于各废水(未检出~308.23ng·L-1)和活性污泥(未检出~120.46 ng.g-1)样品中。  相似文献   

10.
建立了太子参中乙草胺、丁草胺和S-异丙甲草胺的加速溶剂萃取-气相色谱/质谱测定的分析方法。对提取溶剂、萃取温度、净化材料、不同冲洗体积和静态萃取时间、循环次数等实验条件进行了优化。用HP-5MS弹性石英毛细管柱经柱程序升温技术分离,并用质谱检测器检测,内标法计算含量。本方法测定太子参中乙草胺、丁草胺和S-异丙甲草胺的检出限分别为0.16 ng/g、0.18 ng/g和0.05 ng/g,精密度分别为2.6%、3.9%和3.1%,回收率为80.2%-104.1%。所测样品不含上述3种除草剂残留。本方法简便、干扰小、检测效果好,可用于太子参药材中此类除草剂残留的分析。  相似文献   

11.
In this study, a new method for the determination of organophosphorus pesticides (OPPs) (ethoprophos, diazinon, parathion methyl, fenitrothion, malathion, isocarbophos and quinaphos) in orange juice was developed. Single-drop microextraction (SDME) parameters, such as organic solvent, drop volume, agitation rate, extraction time, and salt concentration were optimized through analysis of OPPs in fortified water. The orange juice was simply centrifuged and diluted with water, extracted by SDME and analyzed by gas chromatography (GC) equipped with a flame photometric detection (FPD). Fortification tests were conducted for concentrations between 10 and 500 microg/L; mean relative recoveries for each pesticide were all above 76.2% and below 108.0%. Limits of detection of the method for orange juice were below 5 microg/L for all target pesticides. The repeatability of the proposed method, expressed as relative standard deviation varied between 4.6 and 14.1% (n=5). The proposed method is acceptable in the analysis of OPPs pesticides in juice matrices.  相似文献   

12.
Solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) was applied for the extraction of six organophosphorous pesticides (OPPs) in water samples. The analytes considered in this study were determined by gas chromatography with mass spectrometry and included prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction conditions (extraction solvent and elution/dispersion solvents nature, extraction solvent volume, elution solvent volume, water volume and sample volume) were tested for SPE-DLLME with these analytes and the best results were obtained using carbon tetrachloride as the extraction solvent and acetone as the elution/dispersion solvent. Calibration curves for the determination of OPPs in water samples were constructed in the concentration range of 10-100 ng/L. Limits of detection (LODs) ranged from 38 to 230 pg/L values that are below the maximum admissible level for drinking water (100 ng/L). Relative standard deviations (RSD) were between 8.6 and 10.4% for a fortification level of 100 ng/L. At the same fortification level, the relative recoveries (R.R.) of tap, well and irrigation water samples were in the range of 30.2-97.1%.  相似文献   

13.
An in-syringe ultrasound-assisted emulsification microextraction (USAEME) was developed for the extraction of organophosphorus pesticides (OPPs) from water samples. The OPPs subsequently analyzed gas chromatography (GC) using a microelectron capture detector (μECD). Ultrasound radiation was applied to accelerate the emulsification of μL-level low-density organic solvent in aqueous solutions to enhance the microextraction efficiency of OPPs in the sample preparation for GC-μECD. Parameters affecting the efficiency of USAEME, such as the extraction solvent, solvent volume, pH, salt-addition, and extraction time were thoroughly investigated. Based on experimental results, OPPs were extracted from a 5 mL aqueous sample by the addition of 20 μL toluene as the extraction solvent, followed by ultrasonication for 30 s, and then centrifugation for 3 min at 3200 rpm, offered the best extraction efficiency. Detections were linear in the concentration of 0.01–1 μg/L with detection limits between 1 ng/L and 2 ng/L for OPPs. Enrichment factors ranged from 330 to 699. Three spiked aqueous samples were analyzed, and recovery ranged from 90.1% to 104.7% for farm-field water, and 90.1% to 101.8% for industrial wastewater. The proposed method provides a simple, rapid, sensitive, inexpensive, and eco-friendly process for determining OPPs in water samples.  相似文献   

14.
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography and mass spectrometry (GC-MS) was applied to the determination of six organophosphorous pesticides (OPPs) in water samples. The analytes included in this study were prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction and dispersion solvents were tested for dispersive liquid-liquid microextraction of these analytes and the best results were obtained using chloroform as extraction solvent and 2-propanol as dispersion solvent. Calibration curves of the analytes in water samples were constructed in the concentration range from 100 to 1100 ng/L for prophos, diazinon and methyl parathion and in the range from 100 to 1000 ng/L for chlorpyrifos methyl, fenchlorphos and chlorpyrifos. Limits of detection (LODs) were in the range of 1.5-9.1 ng/L and limits of quantification (LOQs) were in the range of 5.1-30.3 ng/L, below the maximum admissible level for drinking water. Relative standard deviations (RSDs) were between 6.5 and 10.1% in the concentration range of 100-1000 ng/L. The relative recoveries (%RRs) of tap, well and irrigation water samples fortified at 800 ng/L were in the range of 46.1-129.4%, with a larger matrix effect being detected in tap water.  相似文献   

15.
This work describes an optimised method for the determination of six representative organophosphorus pesticides (OPPs) (diazinon, parathion, methyl pirimiphos, methyl parathion, ethoprophos, and fenitrothion) in agricultural soils. The method is based on microwave-assisted extraction using a water-methanol modified mixture for desorption and simultaneous partitioning on n-hexane (MAEP), together with gas chromatography-flame photometric detection (GC-FPD). To improve GC-FPD signals (peak intensity and shape) olive oil was used effectively as a "matrix mimic". The optimisation of the extraction method was achieved in two steps: an initial approach through experimental design and principal component analysis where recovery of compounds using a water-methanol mixture ranged from 54 to 77%, and the second one by studying the addition of KH2PO4 to the extracting solution where recoveries were significantly increased, molecular replacing of OPPs from adsorption sites by phosphate being the probable extraction mechanism. Under optimised conditions, recoveries of pesticides from different soils were higher than 73%, except for methyl parathion in some soils, with SD equal or lower than 11% and detection limits ranging from 0.004 to 0.012 microg g(-1). The proposed method was used to determine OPPs in soil samples from different agricultural zones of Chile.  相似文献   

16.
In this study, a microextraction method termed as ultrasound‐assisted emulsification–microextraction (USAEME) has been developed for the extraction of organophosphorus pesticides (OPPs) in water and orange juice samples. In the USAEME method, aliquots of 50 μL chlorobenzene used as extraction solvent was added to 10 mL water sample in a conical glass centrifugal tube. Factors influencing the USAEME extraction efficiency such as sonication time, extraction solvent, extraction volume and salt addition were evaluated. Under the optimum conditions, enrichment factors ranged from 241 to 311, LOD varied from 5.3 to 10.0 ng/L and linearity with a coefficient of estimation (r2) varied from 0.9991 to 0.9998 in the concentration level range of 0.05–2.5 μg/L for the extraction of OPPs in water samples. Finally, the proposed USAEME method was used for the extraction of OPPs from water and orange juice. The recoveries were in the range of 80.0–110.0%, and the repeatability of the method expressed as RSD (n=3) varied between 1.6 and 13%. The USAEME method has the advantage of being easy to operate, low consumption of organic solvent and high extraction efficiency.  相似文献   

17.
A miniaturized method based on matrix solid-phase dispersion coupled to solid phase extraction and high performance liquid chromatography with diode array detection (MSPD-SPE-HPLC/DAD) was developed for the trace simultaneous determination of the following organophosphorus pesticides (OPPs) in bovine tissue: parathion-methyl, fenitrothion, parathion, chlorfenvinphos, diazinon, ethion, fenchlorphos, chlorpyrifos and carbophenothion. To perform the coupling between MSPD and SPE, 0.05 g of sample was dispersed with 0.2 g of C(18) silica sorbent and packed into a stainless steel cartridge containing 0.05 g of silica gel in the bottom. After a clean-up of high and medium polarity interferences with water and an acetonitrile:water mixture, the OPPs were desorbed from the MSPD cartridge with pure acetonitrile and directly transferred to a dynamic mixing chamber for dilution with water and preconcentration into an SPE 20 mm × 2.0 mm I.D. C(18) silica column. Subsequently, the OPPs were eluted on-line with the chromatographic mobile phase to the analytical column and the diode array detector for their separation and detection, respectively. The method was validated and yielded recovery values between 91% and 101% and precision values, expressed as relative standard deviations (RSD), which were less than or equal to 12%. Linearity was good and ranged from 0.5 to 10 μg g(-1), and the limits of detection of the OPPs were in the range of 0.04-0.25 μg g(-1). The method was satisfactorily applied to the analysis of real samples and is recommended for food control, research efforts when sample amounts are limited, and laboratories that have ordinary chromatographic instrumentation.  相似文献   

18.
Diazinon is an organophosphorus insecticide (OPP) that is used as a pesticide for Chilo suppressalis (WLK) (Lep., Pyralidae) in rice fields. The extraction of diazinon from soil and the stems of rice plants has been carried out by microwave-assisted extraction (MAE) and the results compared with ultrasonic extraction (USE). The best parameters for MAE are hexane-acetone (8:2 v/v) as a solvent, a 2.5 min extraction time, and 20 ml of the solvent volume. Also, surface-water samples of the rice fields were extracted by solid phase extraction (SPE) using a C18 disc. The optimum conditions of SPE were a sample volume of 750 ml, a pH of 7 and high ionic strength of water. The extracted samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The relative standard deviation (RSD) and regression coefficients related to the linearity were <3.5% (n = 5) and 0.99, respectively. The limit of detection (LOD) is 0.1 ng ml(-1) with selected ion monitoring (SIM) at 137 m/z. The average recoveries of diazinon in soil and stem samples by MAE and surface-water by SPE were 98% (+/-3), 94% (+/-5) and 87% (+/-3), respectively. In June, the concentration of diazinon in soil and stem samples of the rice plants in Guilan province is high (55 ng ml(-1)) and in September is low (2 ng ml(-1)). In surface-water samples, the results are converse. In November, diazinon can not be detected in soil, stem or surface-water samples. Diazinon is degraded to diethylthiophosphoric acid. Also, three microorganism genera (Pseudomonas sp, Flavobacterium sp and Agrobacterium sp) have been found to degrade diazinon in soil and surface water.  相似文献   

19.
A PDMS/poly(vinylalcohol) (PDMS/PVA) film prepared through a sol–gel process was coated on stir bars for sorptive extraction, followed by liquid desorption and large volume injection–GC–flame photometric detector (LVI–GC–FPD) for the determination of five organophosphorus pesticides (OPPs) (phorate, fenitrothion, malathion, parathion, and quinalphos) in honey. The preparation reproducibility of PDMS/PVA‐coated stir bar ranged from 4.3 to 13.4% (n = 4) in one batch, and from 6.0 to 12.6% (n = 4) in batch to batch. And one prepared stir bar can be used for more than 50 times without apparent coating loss. The significant parameters affecting stir bar sorptive extraction (SBSE) were investigated and optimized. The LODs for five OPPs ranged from 0.013 (parathion) to 0.081 μg/L (phorate) with the RSDs ranging from 5.3 to 14.2% (c = 1 μg/L, n = 6). The proposed method was successfully applied to the analysis of five OPPs in honey.  相似文献   

20.
An ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) was developed as a new approach for the extraction of organophosphorus pesticides (OPs) in water samples prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). The use of a surfactant as an emulsifier in the UASEME method could enhance the dispersion of water-immiscible extraction solvent into aqueous phase and is favorable for the mass-transfer of the analytes from aqueous phase to the organic phase. Several variables that affect the extraction efficiency, including the kind and volume of the extraction solvent, the type and concentration of the surfactant, salt addition, ultrasound emulsification time and temperature, were investigated and optimized. Under the optimum experimental conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the seven OPs (isocarbophos, phosmet, parathion, parathion-methyl, fenitrothion, fonofos and phoxim), with the correlation coefficients (r) varying from 0.9973 to 0.9998. High enrichment factors were achieved ranging from 210 to 242. The established UASEME-HPLC-DAD method has been successfully applied for the determination of the OPs in real water samples. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes over the three spiked concentration levels of the compounds (10, 50, and 100 ng mL(-1), respectively) in rain, reservoir and well water samples were between 83% and 106% with the relative standard deviations varying from 3.3% to 5.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号