首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aqueous rechargeable batteries are prospective candidates for large-scale grid energy storage. However, traditional anode materials applied lack acid-alkali co-tolerance. Herein, we report a covalent organic framework containing pyrazine (C=N) and phenylimino (−NH−) groups (HPP-COF) as a long-cycle and high-rate anode for both acidic and alkaline batteries. The HPP-COF′s robust covalent linkage and the hydrogen bond network between −NH− and water molecules collectively improve the acid-alkaline co-tolerance. More importantly, the hydrogen bond network promotes the rapid transport of H+/OH by the Grotthuss mechanism. As a result, the HPP-COF delivers a superior capacity and cycle stability (66.6 mAh g−1@ 30 A g−1, over 40000 cycles in 1 M H2SO4 electrolyte; 91.7 mAh g−1@ 100 A g−1, over 30000 cycles @ 30 A g−1 in 1 M NaOH electrolyte). The work opens a new direction for the structural design and application of COF materials in acidic and alkaline batteries.  相似文献   

2.
The solar-driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron-hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5Zn0.5S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g−1 h−1 (226.4 μmol h−1; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency.  相似文献   

3.
Exploiting dual-functional photoelectrodes to harvest and store solar energy is a challenging but efficient way for achieving renewable energy utilization. Herein, multi-heterostructures consisting of N-doped carbon coated MoS2 nanosheets supported by tubular TiO2 with photoelectric conversion and electronic transfer interfaces are designed. When a photo sodium ion battery (photo-SIB) is assembled based on the heterostructures, its capacity increases to 399.3 mAh g−1 with a high photo-conversion efficiency of 0.71 % switching from dark to visible light at 2.0 A g−1. Remarkably, the photo-SIB can be recharged by light only, with a striking capacity of 231.4 mAh g−1. Experimental and theoretical results suggest that the proposed multi-heterostructures can enhance charge transfer kinetics, maintain structural stability, and facilitate the separation of photo-excited carriers. This work presents a new strategy to design dual-functional photoelectrodes for efficient use of solar energy.  相似文献   

4.
Lithium-sulfur batteries are promising secondary energy storage devices that are mainly limited by its unsatisfactory cyclability owing to inefficient reversible conversion of sulfur and lithium sulfide on the cathode during the discharge/charging process. In this study, nitrogen-doped three-dimensional porous carbon material loaded with CoSe2 nanoparticles (CoSe2-PNC) is developed as a cathode for lithium-sulfur battery. A combination of CoSe2 and nitrogen-doped porous carbon can efficiently improve the cathode activity and its conductivity, resulting in enhanced redox kinetics of the charge/discharge process. The obtained electrode exhibits a high discharge specific capacity of 1139.6 mAh g−1 at a current density of 0.2 C. After 100 cycles, its capacity remained at 865.7 mAh g−1 thus corresponding to a capacity retention of 75.97 %. In a long-term cycling test, discharge specific capacity of 546.7 mAh g−1 was observed after 300 cycles performed at a current density of 1 C.  相似文献   

5.
Cooperative coupling of H2 evolution with oxidative organic synthesis is promising in avoiding the use of sacrificial agents and producing hydrogen energy with value-added chemicals simultaneously. Nonetheless, the photocatalytic activity is obstructed by sluggish electron-hole separation and limited redox potentials. Herein, Ni-doped Zn0.2Cd0.8S quantum dots are chosen after screening by DFT simulation to couple with TiO2 microspheres, forming a step-scheme heterojunction. The Ni-doped configuration tunes the highly active S site for augmented H2 evolution, and the interfacial Ni−O bonds provide fast channels at the atomic level to lower the energy barrier for charge transfer. Also, DFT calculations reveal an enhanced built-in electric field in the heterojunction for superior charge migration and separation. Kinetic analysis by femtosecond transient absorption spectra demonstrates that expedited charge migration with electrons first transfer to Ni2+ and then to S sites. Therefore, the designed catalyst delivers drastically elevated H2 yield (4.55 mmol g−1 h−1) and N-benzylidenebenzylamine production rate (3.35 mmol g−1 h−1). This work provides atomic-scale insights into the coordinated modulation of active sites and built-in electric fields in step-scheme heterojunction for ameliorative photocatalytic performance.  相似文献   

6.
Aqueous Zn-Iodine (I2) batteries are attractive for large-scale energy storage. However, drawbacks include, Zn dendrites, hydrogen evolution reaction (HER), corrosion and, cathode “shuttle” of polyiodines. Here we report a class of N-containing heterocyclic compounds as organic pH buffers to obviate these. We evidence that addition of pyridine /imidazole regulates electrolyte pH, and inhibits HER and anode corrosion. In addition, pyridine and imidazole preferentially absorb on Zn metal, regulating non-dendritic Zn plating /stripping, and achieving a high Coulombic efficiency of 99.6 % and long-term cycling stability of 3200 h at 2 mA cm−2, 2 mAh cm−2. It is also confirmed that pyridine inhibits polyiodines shuttling and boosts conversion kinetics for I/I2. As a result, the Zn-I2 full battery exhibits long cycle stability of >25 000 cycles and high specific capacity of 105.5 mAh g−1 at 10 A g−1. We conclude organic pH buffer engineering is practical for dendrite-free and shuttle-free Zn-I2 batteries.  相似文献   

7.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF-HUST-A1 with a benzylamine-functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF-HUST-A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g−1 h−1). Photocatalytic overall water splitting is achieved by depositing dual co-catalysts in CTF-HUST-A1, with H2 evolution and O2 evolution rates of 25.4 μmol g−1 h−1 and 12.9 μmol g−1 h−1 in pure water without using sacrificial agent.  相似文献   

8.
以质子化层状钙钛矿氧化物H1.9K0.3La0.5Bi0.1Ta2O7 (HKLBT)作为产氢催化剂, Pt/WO3作为产氧催化材料进行Z 型体系下完全分解水反应. 考察了不同载流子传递介质及不同载流子浓度对反应活性的影响. 结果表明, 以Fe2+/Fe3+为载流子传递介质时可以实现水的完全分解(H2/O2体积比为2:1), 8 mmol·L-1的FeCl3作为初始载流子传递介质时, 产氢、产氧活性分别为66.8和31.8 μmol·h-1, 氢氧体积比为2.1:1. 受光催化材料对载流子传递介质氧化还原速度的限制, 过高的载流子传递介质浓度并不能提高光催化活性.  相似文献   

9.
Hydrogen generated in electrolyzers is discussed as a key element in future energy scenarios, but oxygen evolution as the standard anode reaction is a complex multi-step reaction requiring a high overpotential. At the same time,it does not add value-the oxygen is typically released into the atmosphere. Alternative anode reactions which can proceed at similar current densities as the hydrogen evolution are, therefore, of highest interest. We have discovered a high-performance electrode based on earth-abundant elements synthesized in the presence of H2O2, which is able to sustain current densities of close to 1 A cm−2 for the oxidation of many organic molecules, which are partly needed at high production volumes. Such anode reactions could generate additional revenue streams, which help to solve one of the most important problems in the transition to renewable energy systems, i.e. the cost of hydrogen electrolysis.  相似文献   

10.
A great deal of attention has been paid on layered manganese dioxide (δ−MnO2) as promising cathode candidate for aqueous zinc-ion battery (ZIB) due to the excellent theoretical capacity, high working voltage and Zn2+/H+ co-intercalation mechanism. However, caused by the insertion of Zn2+, the strong coulomb interaction and sluggish diffusion kinetics have resulted in significant structure deformation, insufficient cycle stability and limited rate capability. And it is still far from satisfactory to accurately modulate H+ intercalation for superior electrochemical kinetics. Herein, the terrace-shape δ−MnO2 hybrid superlattice by polyvinylpyrrolidone (PVP) pre-intercalation (PVP−MnO2) was proposed with the state-of-the-art ZIBs performance. Local atomic structure characterization and theoretical calculations have been pioneering in confirming the hybrid superlattice-triggered synergy of electron entropy stimulation and selective H+ Grotthuss intercalation. Accordingly, PVP−MnO2 hybrid superlattice exhibits prominent specific capacity (317.2 mAh g−1 at 0.125 A g−1), significant rate performance (106.1 mAh g−1 at 12.5 A g−1), and remarkable cycle stability at high rate (≈100 % capacity retention after 20,000 cycles at 10 A g−1). Therefore, rational design of interlayer configuration paves the pathways to the development of MnO2 superlattice for advanced Zn−MnO2 batteries.  相似文献   

11.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

12.
Multi-wall Sn/SnO2@carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire-in-double-wall-tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin-based electrode materials caused by volume expansion. Even after 2000 cycles, the wire-in-double-wall-tube Sn/SnO2@carbon nanofibers exhibit a high specific capacity of 986.3 mAh g−1 (1 A g−1) and still maintains 508.2 mAh g−1 at high current density of 5 A g−1. This outstanding electrochemical performance suggests the multi-wall Sn/SnO2@ carbon hollow nanofibers are great promising for high performance energy storage systems.  相似文献   

13.
Water electrolysis for H2 production is restricted by the sluggish oxygen evolution reaction (OER). Using the thermodynamically more favorable hydrazine oxidation reaction (HzOR) to replace OER has attracted ever-growing attention. Herein, we report a twisted NiCoP nanowire array immobilized with Ru single atoms (Ru1−NiCoP) as superior bifunctional electrocatalyst toward both HzOR and hydrogen evolution reaction (HER), realizing an ultralow working potential of −60 mV and overpotential of 32 mV for a current density of 10 mA cm−2, respectively. Inspiringly, two-electrode electrolyzer based on overall hydrazine splitting (OHzS) demonstrates outstanding activity with a record-high current density of 522 mA cm−2 at cell voltage of 0.3 V. DFT calculations elucidate the cooperative Ni(Co)−Ru−P sites in Ru1−NiCoP optimize H* adsorption, and enhance adsorption of *N2H2 to significantly lower the energy barrier for hydrazine dehydrogenation. Moreover, a self-powered H2 production system utilizing OHzS device driven by direct hydrazine fuel cell (DHzFC) achieve a satisfactory rate of 24.0 mol h−1 m−2.  相似文献   

14.
Aqueous Zn batteries are attracting extensive attentions, but their application is still hindered by H2O-induced Zn-corrosion and hydrogen evolution reactions. Addition of organic solvents into aqueous electrolytes to limit the H2O activity is a promising solution, but at the cost of greatly reduced Zn anode kinetics. Here we propose a simple strategy for this challenge by adding 50 mM iodine ions into an organic-water (1,2-dimethoxyethane (DME)+water) hybrid electrolyte, which enables the electrolyte simultaneously owns the advantages of low H2O activity and accelerated Zn kinetics. We demonstrate that the DME breaks the H2O hydrogen-bond network and exclude H2O from Zn2+ solvation shell. And the I is firmly adsorbed on the Zn anode, reducing the Zn2+ de-solvation barrier from 74.33 kJ mol−1 to 32.26 kJ mol−1 and inducing homogeneous nucleation behavior. With such electrolyte, the Zn//Zn symmetric cell exhibits a record high cycling lifetime (14.5 months) and achieves high Zn anode utilization (75.5 %). In particular, the Zn//VS2@SS full cell with the optimized electrolyte stably cycles for 170 cycles at a low N : P ratio (3.64). Even with the cathode mass-loading of 16.7 mg cm−2, the full cell maintains the areal capacity of 0.96 mAh cm−2 after 1600 cycles.  相似文献   

15.
Carbon materials slightly doped with heteroatoms such as nitrogen (N-RFC) or sulfur (S-RFC) are investigated as active catalysts for the electrochemical bielectronic oxygen reduction reaction (ORR) to H2O2. Mesoporous carbons with wide, accessible pores were prepared by pyrolysis of a resorcinol-formaldehyde resin using a PEO-b-PS block copolymer as a sacrificial templating agent and the nitrogen and sulfur doping were accomplished in a second thermal treatment employing 1,10-phenanthroline and dibenzothiophene as nitrogen and sulfur precursors, respectively. The synthetic strategy allowed to obtain carbon materials with very high surface area and mesopore volume without any further physicochemical post treatment. Voltammetric rotating ring-disk measurements in combination with potentiostatic and galvanostatic bulk electrolysis measurements in 0.5 m H2SO4 demonstrated a pronounced effect of heteroatom doping and mesopores volume on the catalytic activity and selectivity for H2O2. N-RFC electrode was employed as electrode material in a 45 h electrolysis showing a constant H2O2 production of 298 mmol g−1 h−1 (millimoles of H2O2 divided by mass of catalyst and electrolysis time), with a faradic efficiency (FE) up to 61 % and without any clear evidence of degradation. The undoped carbon RFC showed a lower production rate (218 mmol g−1 h−1) but a higher FE of 76 %, while the performances drastically dropped when S-RFC (production rate 11 mmol g−1 h−1 and FE=39 %) was used.  相似文献   

16.
The immiscibility of crystallographic facets in multi-metallic catalysts plays a key role in driving the green H2 production by water electrolysis. The lattice mismatch between tetragonal In and face-centered cubic (fcc) Ni is 14.9 % but the mismatch with hexagonal close-packed (hcp) Ni is 49.8 %. Hence, in a series of Ni−In heterogeneous alloys, In is selectively incorporated in the fcc Ni. The 18–20 nm Ni particles have 36 wt % fcc phase, which increases to 86 % after In incorporation. The charge transfer from In to Ni, stabilizes the Ni0 state and In develops a fractional positive charge that favors *OH adsorption. With only 5 at% In, 153 mL h−1 H2 is evolved at −385 mV with mass activity of 57.5 A g−1 at—400 mV, 200 h stability at −0.18 V versus reversible hydrogen electrode (RHE), and Pt-like activity at high current densities, due to the spontaneous water dissociation, lower activation energy barrier, optimal adsorption energy of OH ions and the prevention of catalyst poisoning.  相似文献   

17.
可再生能源与电解水制氢技术的结合是实现可持续制氢的最佳途径. 然而,传统电解水技术中解决氢-氧同时、同步、同地产生的问题必须依赖于膜分离技术,大幅限制了氢-氧分离和氢气异地运输的灵活性,并阻碍了可再生能源(如风能、太阳能)与电解水技术的直接结合. 针对上述问题,作者课题组在近期提出了基于电池电极反应的分步法电解水制氢技术,即通过电池电极的可逆电化学反应将现有电解水过程拆分为制氢和制氧分立步骤,实现在无膜条件下氢气和氧气的分时、分地交替制备,提升了电解水制氢的灵活性,促进了可再生能源向氢能的直接转化. 本文将介绍这一新技术的研究进展,并分析这一技术的优点和面临的挑战.  相似文献   

18.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi-electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single-electron transfer, which are not ideal for multivalent-ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope-like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two-electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g−1 at a current density of 100 mA g−1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg−1 for RMBs and >500 Wh kg−1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   

19.
The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 μmol ⋅ gcat−1 ⋅ h−1) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal–organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 μmol ⋅ gcat−1 ⋅ h−1) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications.  相似文献   

20.
Advanced aqueous batteries are promising for next generation flexible devices owing to the high safety, yet still requiring better cycling stability and high capacities in wide temperature range. Herein, a polymeric acid hydrogel electrolyte (PAGE) with 3 M Zn(ClO4)2 was fabricated for high performance Zn/polyaniline (PANI) batteries. With PAGE, even at −35 °C the Zn/Zn symmetrical battery can keep stable for more than 1 500 h under 2 mA cm−2, and the Zn/PANI battery can provide ultra-high stable specific capacity of 79.6 mAh g−1 for more than 70 000 cycles at 15 A g−1. This can be mainly ascribed to the −SO3H+ function group in PAGE. It can generate constant protons and guide the (002) plane formation to accelerate the PANI redox reaction kinetics, increase the specific capacity, and suppress the side reaction and dendrites. This proton-supplying strategy by polymeric acid hydrogel may further propel the development of high performance aqueous batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号