首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel conjugated near-infrared (NIR) absorbing donor–acceptor type copolymers comprising benzodithiophene as the donor and [1,2,5]chalcogenazolo[3,4-f]-benzo[1,2,3]triazole derivatives as the acceptors, spaced with thiophene as the π-bridge, were designed and synthesized via Stille polycondensation reaction. The effect of acceptor strength on optoelectronic properties was targeted and investigated. Branched alkyl chains (the extended 2-octyl-1-dodecyl alkyl chain;  C8C12) were introduced to 5H-[1,2,3]triazolo[4′,5′:4,5]benzo[1,2-c][1,2,5]thiadiazole and 5H-[1,2,3]triazolo[4′,5′:4,5]benzo[1,2-c][1,2,5]selenadiazole for enhanced solubility of polymers which ease the processability hence device constructions. The strongly electron-withdrawing units lead to a substantial change in the absorption properties via promotion of the intramolecular charge transfer band alongside the π–π* transition. The resultant soluble polymers were characterized via cyclic voltammetry to determine highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels as −5.00 and −3.92 eV for PSBT and −4.86 and −4.04 eV for PSeBT, respectively. Electronic band gaps of the copolymers were calculated as 1.08 eV for PSBT and 0.82 eV for PSeBT, respectively. NIR absorbing copolymers were used to construct electrochromic devices.  相似文献   

2.
Starting from the readily available 4-bromomethyl-5-benzoyl-1,2,3-thiadiazole and 5-bromomethyl-4-benzoyl-1,2,3-thiadiazole; thieno[3,4-d][1,2,3]thiadiazole, selenolo[3,4-d][1,2,3]-thiadiazole and pyrrolo[3,4-d][1,2,3]thiadiazole were synthesized in good yield.  相似文献   

3.
The o-diamine, 3,4-diamino-1,2,5-thiadiazole ( 2 ), was synthesized from 3,4-dichloro-1,2,5-thiadiazole ( 3 ) hy three methods. Aqueous glyoxal cyclized 2 into [1,2,5]thiadiazolo[3,4–6]-pyrazine ( 14 ). 3,4-Dichloro-1,2,5-thiadiazole 1,1-dioxide ( 18 ) reaeted with 2 to give 1,3-dihydro-bis[1,2,5]thiadiazolo[3,4-b:3′,4′-e]pyrazine 2,2-dioxide ( 19 ). The reaction of 2 with selenium oxyehloride led to [1,2,5]selenadiazolo[3,4-c] [1,2,5]thiadiazole ( 12 ). Ring closure of 2,3-diaminoquinoxaline ( 4 ) with thionyl chloride or selenium oxychloride gave [1,2,5]thiadiazolo-[3,4-b]quinoxaline ( 21 ) and [1,2,5]selenadiazolo[3,4-b]quinoxaline ( 22 ), respectively. Sulfurous acid reduced 21 to the 4,9-dihydro derivative 23 , which was reoxidized to 21 with chloranil. Aqueous hase hydrolyzed 21 to 4 via the hydrated intermediate 24 . Aqueous glyoxal cyclized 4 to the covalent hydrate of pyrazino[2,3-b]quinoxaline ( 26 ), 27 , which was dehydrated to 26 . Compound 26 underwent rapid addition of two alcohols in a process analogous to covalent hydration.  相似文献   

4.
The reduction of a dithienylbenzobisthiadiazole derivative TBBT can be performed selectively so as to afford either [1,2,5]-thiadiazolo[3,4-g]quinoxaline (TQ) or pyrazino[2,3-g]quinoxaline (PQ) derivatives. This approach offers a much milder, shorter, and more efficient route to PQ and TQ derivatives than current methods. It is further shown how the optical and electrochemical properties of PQ and TQ can be tuned by choice of appropriate substituents.  相似文献   

5.
Starting from the readily available 4-bromomethy-5-carbethoxy 1,2,3-thiadiazole (V), 5-bromomethy-4-carbethoxy-1,2,3-thiadiazole (IX) and ethyl 2-aryl-5-bromomethyloxazole-4-carboxylate (XIV), 4,10-dihydro-10-oxo[1]benzoxepino[3,4-d][1,2,3]thiadiazole (Ia), 4,10-dihydro-10-oxo[1]benzothiepino[3,4-d][1,2,3]thiadiazole (Ib), 4,10-dihydro-4-oxo[1]benzothiepino[4,3-d] [1,2,3]thiazole (II), 2-aryl-4,10-dihydro-4-oxo[1]benzoxepino[4,3-d]oxazoles (XIXa-XIXc) and 2-aryl-4,10-dihydro-4-oxo[1]benzothiepino[4,3-d]oxazoles (XIXd-XIXf) were prepared.  相似文献   

6.
Russian Journal of Organic Chemistry - Pyrrolo[2,3-f]quinoxalines are synthesized by heating 1,2,5-oxadiazolo[3,4-g]indoles with ethanolamine in the presence of p-toluenesulfonic acid.  相似文献   

7.
The first synthesis of benzo[1,2‐c:3,4‐c']bis[1,2,5]selenadiazole has been developed starting from commercially available 4‐nitrobenzo‐2,1,3‐selenadiazole. Improved syntheses of the related heterocycles [1,2,5]selenadiazolo[3,4‐e]‐2,1,3‐benzothiadiazole, furazanobenzo‐2,1,3‐thiadiazole and furazanobenzo‐2,1,3‐selenadiazole are also reported.  相似文献   

8.
To understand the effect of the substitution by several strong electron-withdrawing groups ([1,2,5]thiadiazolo[3,4-g]quinoxaline; benzo[c][1,2,5]thiadiazole and quinoxaline) and end-capped donor groups (thiophene and phenyl) on the structural and optoelectronic properties of six conjugated compounds C1–C6 based on 2,7-silafluorene and 4,7-di (2′-thienyl) used for organic solar cells application such as bulk heterojunction (BHJ) solar cell. We have done a theoretical study to calculate and predict these properties. The electronic structures and optical absorption spectra of donors were calculated using density functional theory, and the Zerner’s intermediate neglect of differential overlap functional theory level is employed to investigate the excited singlet states, respectively, and to shed light on how the substitution and the pi-conjugation order influence the performance of these compounds in the BHJ cell. Moreover, the theoretical results including optoelectronic and photovoltaic properties of the compound C1 are in good agreement with the available experimental data extracted from bibliography. The calculated results of these molecules reveal that the compounds C3 and C6, with the [1,2,5]thiadiazolo[3,4-g]quinoxaline as electron acceptor seem to be good candidates materials for photovoltaic applications due to their best optoelectronic and photovoltaic properties.  相似文献   

9.
Four new alternating narrow band-gap copolymers containing benzodithiophene, 4,8-dithiophen-2-yl-benzo[1,2-c;4,5-c′-bis[1,2,5]thiadiazole, 4,9-bis(thiophen-2-yl)-6,7-di(2-ethylhexyl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline, 5,8-dibromo-2,3-bis(5-octylthiophen-2-yl)quinoxaline, and 4,7-bis(5-bromothiophen-2-yl)benzo[1,2,5] thiadiazole units are synthesized under Stille reaction conditions. The structures, molecular masses, and physical properties of the copolymers are studied via 1H NMR spectroscopy, GPC, cyclic voltammetry, and thermomechanical and thermogravimetric analyses. The polymers show solubility and a broad absorption region (with the band gap in the range from 0.81 to 1.53 eV). All of the polymers are photostable in air, and their levels of the highest occupied molecular orbital vary from ?4.98 to ?5.30 eV. Polymer solar cells based on these copolymers as donors and fullerene PC60BM as an acceptor show open-circuit voltages in the range 0.16–0.61 V, and the efficiencies of the devices are in the range 0.02–0.49%.  相似文献   

10.
Benzo [1,2-c:3,4-c′:5,6-c″] tris [1,2,5] thiadiazole (1) was synthesized from benzo [1,2-c:3,4-c′] - bis [1,2,5] thiadiazole (11) . Nitration of 11 gave compound 15 , which on direct amination gave nitroamine 17 . Reduction of 17 gave diamine 18 , and cyclization of 18 with thionyl chloride gave 1 . Diamine 18 was also cyclized with selenium oxychloride, glyoxal, 9,10-phenanthrene-quinone, and formic acid to give the compounds 4, 5, 19 , and 6 , respectively. A new procedure for the preparation of 2,1,3-benzothiadiazole (7) from o-phenylenediamine was used.  相似文献   

11.
Reaction coordinate mapping was used to study the reaction of 3,4‐diamino[1,2,5]oxadiazole (3,4‐diaminofurazan) and 3,4‐diamino[1,2,5]thiadiazole with glyoxal. The thiadiazole was known to give a good yield of [1,2,5]thiadiazolo[3,4‐b]pyrazine, whereas the oxadiazole had not yielded, until now, [1,2,5]oxadiazolo[3,4‐b]pyrazine (or furazano[2,3‐b]pyrazine). The calculations suggested that the diols, 5,6‐dihydroxy‐4,5,6,7‐tetrahydro[1,2,5]oxadiazolo[3,4‐b]pyrazine and 5,6‐dihydroxy‐4,5,6,7‐tetrahydro[1,2,5]thiadiazolo[3,4‐b]pyrazine should be stable intermediates, and once formed, should provide a pathway to the target compounds via two dehydration steps, under forcing conditions. With this information in mind, the reactions of 3,4‐diamino[1,2,5]oxadiazole with glyoxal and pyruvic aldehyde were re‐examined. The reaction of 3,4‐diamino[1,2,5]oxadiazole with glyoxal and pyruvic aldehyde produced, under slightly basic conditions, a near quantitative yield of the expected initial products, 5,6‐dihydroxy‐4,5,6,7‐tetrahydro[1,2,5]oxadiazolo[3,4‐b]pyrazine and the 5‐methyl analog, respectively. The diols were easily isolated by lyophilizing the aqueous reaction mixture. The diols were pyrolized on silica gel at 160°C to give the desired [1,2,5]oxadiazolo[3,4‐b]pyrazine and the 5‐methyl analog. Both compounds were easily reduced to the corresponding 4,5,6,7‐tetrahydro‐derivative using sodium borohydride in THF/methanol. The [1,2,5]oxadiazolo[3,4‐b]pyrazine also displayed other interesting chemistry.  相似文献   

12.
Electrochromic polymers based on [1,2,5]thiadiazolo[3,4‐g]quinoxaline acceptor and thiophene, 3,4‐ethylenedioxythiophene and 3,3‐didecyl‐3,4‐proylenedioxythiophene donors, namely poly(6,7‐diphenyl‐4,9‐di(thiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P1 ), poly(4‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐9‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐7‐yl)‐6,7‐diphenyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P2 ), and poly(4‐(3,3‐didecyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐6‐yl)‐9‐(3,3‐didecyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐8‐yl)‐6,7‐diphenyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P3 ), respectively, were electrochemically and/or chemically synthesized and characterized. Electrochemical and optical properties of the polymers were then investigated. The results, which were obtained electrochemically and optically, indicate that the polymers bearing the same acceptor and different donor units have a band gap range of 0.59–1.24 eV depending on the strength and size of the donor units and band gap determination method. A significant finding in this study was the phenomenon that when the acceptor is physically huge, the general rule that a weak donor would have a high band gap whereas a strong donor would have low band gap can be broken due to the torsional angles/steric hindrances involved with physically large donor molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3483–3493  相似文献   

13.
[1,2,5]Thiadiazolo[3,4-c][1,2,5]thiadiazole (1) is synthesized in 62% yield by fluoride ion-induced condensation of 3,4-difluoro-1,2,5-thiadiazole with (Me(3)SiN=)(2)S. The reversible electrochemical reduction of 1 leads to the long-lived [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl radical anion (2) and further to the dianion (3). The radical anion 2 is also obtained by the chemical reduction of the precursor 1 with t-BuOK in MeCN. The radical anion 2 is characterized by ESR spectroscopy in solution and in the crystalline state. The stable salts [K(18-crown-6)][2] and [K(18-crown-6)][2].MeCN (8 and 9, respectively) are isolated from the spontaneous decomposition of the [K(18-crown-6)][PhXNSN] (6, X = S; 7, X = Se) salts in MeCN solution followed by XRD characterization. The radical anion 2 acts as a bridging ligand in 8 and as chelating ligand in 9. The structural changes observed by XRD in going from 1 to 2 are explained by means of DFT/(U)B3LYP/6-311+G calculations.  相似文献   

14.
The reaction of tetrasulfur tetranitride with alkoxybenzenes such as anisole ( 1a ), o- ( 1b ), m-( 1c ), p-dimethoxybenzenes ( 1d ), and benzyl ether ( 1e ) was investigated. Benzo[1,2-c:3,4-c′ :5,6-c ]-tris[1,2,5]thiadiazole ( 2 ) and benzo[1,2, c:3,4-c′ ]bis[1,2,5]thiadiazoles ( 3a and 3b ) were isolated. J. Chem. Soc., 14, 963 (1977)  相似文献   

15.
Novel heterocycles [1,2,5]selenadiazolo[3,4‐e][1,4]diazepines 3a‐c , [1,2,5]thiadiazolo[3,4‐e]‐[1,4]diazepines 7a‐c , [1,2,5]selenadiazolo[3,4‐e][1,4]oxaepines 4a,b , [1,2,5]thiadiazolo[3,4‐e]‐[1,4]oxazepines 9a‐c and [1,2,5]selena(or thia)diazolo[3,4‐c][1,2,6]thiadiazines 10a,b were synthesized starting form 4,6‐dimethyl[1,2,5]se]enadiazolo[3,4‐d]pyrimidine‐5,7(4H,6H)‐dione 1 or 4,6‐dimethyl‐[1,2,5]thiadiazolo[3,4‐d]pyrimidine‐5,7(4H,6H)‐dione 5 .  相似文献   

16.
The condensation of 4-amino-2,1,3-benzothiadiazole (IV) with diphenyliodonium-2-earboxylate gave N-(2,1,3-benzothiadiazoI-4-yl)anthranilic acid (V) (28%), which was cyclized with phosphorus oxychloride to 6-chloro[1,2,5]thiadiazolo[3,4-c]acridine (VI) (84%). Treatment of VI with 3-(dimethylamino)-1-propanethiol hydrochloride in phenol afforded 6-[ [3-(dimethylamino)-propyl]thio] [1,2,5]thiadiazolo[3,4-c]acridine (VII) (65%). The reaction of IV with a mixture of methyl and ethyl 2-oxocyclohexanecarboxylate gave the adduct, which was ring closed in Dowtherm to 7,9,10,1 1-tetrahydro[1,2,5] thiadiazolo[3,4-c]acridin-6(8H)one (VIII) (70%). Chlorination of VIII with phosphorus oxychloride gave 6-chloro-7,8,9,10-tetrahydro[1,2,5]thiadiazolo[3,4-c]acridine (IX) (84%), which was condensed with 3-(dimethylamino)-1-propanethiol hydrochloride in phenol yielding 6-[ [3-(dimethylamino)propyl]thio]-7,8,9,10-tetrahydrof 1,2,5]-thiadiazolo[3,4-c]acridine (X) (27%). 6-[ [3(1)imethylamino)propyl]thio]-8,9-dihydro-7H-cyclopenta[b] [1,2,5]thiadiazolo[3,4-h]quinoline (XIII) (25%) was prepared similarly from IV and a mixture of methyl and ethyl 2-oxocyclopentanecarboxylate via 7,8,9,10-tetrahydro-6H-cyclopenta[b][1,2,5]thiadiazolo[3,4-h]quinolin-6-one (XI) (85%) and 6-chloro-8,9-dihydro-7H-cyclopenta[b][1,2,5]thiadiazolof3,4-h]quinoline (XII) (56%). The effects of compounds VII-XIII as inhibitors of platelet aggregation are discussed.  相似文献   

17.
We report the synthesis, one- and two-photon absorption spectroscopy, fluorescence, and electrochemical properties of a series of quadrupolar molecules that feature proquinoidal π-aromatic acceptors. These quadrupolar molecules possess either donor-acceptor-donor (D-A-D) or acceptor-donor-acceptor (A-D-A) electronic motifs, and feature 4-N,N-dihexylaminophenyl, 4-dodecyloxyphenyl, 4-(N,N-dihexylamino)benzo[c][1,2,5]thiadiazolyl or 2,5-dioctyloxyphenyl electron donor moieties and benzo[c][1,2,5]thiadiazole (BTD) or 6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (TDQ) electron acceptor units. These conjugated structures are highly emissive in nonpolar solvents and exhibit large spectral red-shifts of their respective lowest energy absorption bands relative to analogous reference compounds that incorporate phenylene components in place of BTD and TDQ moieties. BTD-based D-A-D and A-D-A chromophores exhibit increasing fluorescence emission red-shifts, and a concomitant decrease of the fluorescence quantum yield (Φ(f)) with increasing solvent polarity; these data indicate that electronic excitation augments benzothiadiazole electron density via an internal charge transfer mechanism. The BTD- and TDQ-containing structures exhibit blue-shifted two-photon absorption (TPA) spectra relative to their corresponding one-photon absorption (OPA) spectra, and display high TPA cross sections (>100 GM) within these spectral windows. D-A-D and A-D-A structures that feature more extensive conjugation within this series of compounds exhibit larger TPA cross sections consistent with computational simulation. Factors governing TPA properties of these quadrupolar chromophores are discussed within the context of a three-state model.  相似文献   

18.
The synthesis and characterization of the extended thieno[3,4-b]pyrazine analogues acenaphtho[1,2-b]thieno[3,4-e]pyrazine (3a), 3,4-dibromoacenaphtho[1,2-b]thieno[3,4-e]pyrazine (3b), 3-octylacenaphtho[1,2-b]thieno[3,4-e]pyrazine (3c), dibenzo[f,h]thieno[3,4-b]quinoxaline (4), and thieno[3',4':5,6]pyrazino[2,3-f][1,10]phenanthroline (5) are reported. Comparison of structural, electrochemical, and photophysical properties to those of simple thieno[3,4-b]pyrazines are provided in order to provide structure-function relationships within this series of compounds.  相似文献   

19.
Two novel acceptors of benzo[c][1,2,5]thiadiazole and quinoxaline with conjugated dithienylbenzothiadiazole pendants were first designed and synthesized for building efficient photovoltaic copolymers. Based on benzo[1,2‐b;3,4‐b′]dithiophene donors and the two acceptors, two new copolymers have been prepared by Stille coupling polymerization. The resulting copolymers were characterized by 1H NMR, gel permeation chromatography, and thermogravimetric analysis. UV–Visible absorption and cyclic voltammetry measurements indicated that the two copolymers possessed strong and broad absorption in the range of 300–700 nm, and deep‐lying energy levels of highest occupied molecular orbitals. The polymer photovoltaic devices based on benzo[c][1,2,5]thiadiazole‐based copolymer/phenyl‐C71‐butyric acid methyl ester exhibited a power conversion efficiency of 2.42%, attributed to its relatively better light‐harvesting ability and active film morphology. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 668–677  相似文献   

20.
Russian Journal of Electrochemistry - Nanoparticles (NP) of Au, Ir, Pd, Pt, and Rh are synthesized by benzimidazo[1',2':1,2]quinolino-[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号