首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 158 毫秒
1.
采用电化学方法制备Ag2S/Ag3PO4/Ni复合薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜的光催化机理进行了探索。结果表明:最佳工艺制备的Ag2S/Ag3PO4/Ni是由均匀的球形纳米颗粒构成的薄膜,其光催化活性明显优于纯Ag3PO4/Ni薄膜和纯Ag2S/Ni薄膜,且在保持薄膜光催化活性基本不变的前提下可循环使用6次。提出了可见光下Ag2S/Ag3PO4/Ni复合薄膜光催化降解罗丹明B的反应机理。  相似文献   

2.
采用简单的化学偏聚法合成出Ag3PO4纳米颗粒、磷酸钴(Co3(PO42,CoP)纳米片以及它们两者的纳米复合结构(CoP/Ag3PO4),同时还比较了它们的可见光催化活性. 采用场发射扫描电镜(FESEM)、X 射线衍射(XRD)、紫外-可见(UV-Vis)吸收光谱以及光致发光谱等手段对其形貌、结构、光学以及可见光催化性能等进行表征. 结果表明,CoP/Ag3PO4复合纳米结构的可见光降解甲基橙(MO)的速率和循环稳定性均明显优于其它两种物质. 这表明CoP应该起着共催化剂的作用,它能够抑制光生电子与空穴之间的复合,并且提供大量高活性的光生空穴. 此外,我们还发现CoP/Ag3PO4降解另一种阳离子型染料——罗丹明B(RhB)的能力则远不如纯Ag3PO4,这可能是与光催化剂的表面性质发生改变有关,造成更低的RhB吸附能力. 本文提供了一种廉价制备高效可见光催化剂的新方法.  相似文献   

3.
采用化学沉淀法制备中空管状 g-C3N4/Ag3PO4复合催化剂。通过 X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)和荧光光谱对其结构、形貌和光学性能进行了表征。结果表明:Ag3PO4纳米颗粒均匀地分散在中空管状g-C3N4表面,两者紧密结合形成异质结。研究复合催化剂在可见光照射下降解盐酸四环素(TC)的光催化活性。结果显示:复合催化剂在80 min内对TC的降解率为98%,其降解反应速率常数是纯相Ag3PO4的3倍。经过5次循环实验后复合催化剂对于TC的降解率仍保持87%,具有优良的循环稳定性。捕获实验表明空穴(h+)和超氧负离子(·O2ˉ)是光催化反应过程中的主要活性物种。根据能带理论,提出了复合催化剂异质结的Z型光催化机理。  相似文献   

4.
采用机械球磨法成功制备Ag3PO4/MoS2纳米片复合催化剂。运用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis)和荧光发射光谱(PL)对复合催化剂的结构和形貌进行了表征。结果表明,Ag3PO4纳米粒子均匀地附着在MoS2纳米片层结构上,两者形成紧密结合。以亚甲基蓝为模拟污染物,研究复合催化剂在可见光照射下的光催化特性;通过循环实验考察复合催化剂的稳定性。结果显示,含有1%的MoS2纳米片与Ag3PO4形成的复合催化剂在30 min内对亚甲基蓝的降解率为95%,其降解动力学常数是纯相Ag3PO4的2倍。经过5次循环实验后复合催化剂对于亚甲基蓝的降解率为84%,而纯Ag3PO4对于亚甲基蓝的降解率仅为35%。Ag3PO4/MoS2纳米片复合催化剂具有优良的光催化活性和高稳定性,主要归因于二硫化钼纳米片与磷酸银形成异质结,磷酸银激发的电子和二硫化钼纳米片产生的空穴直接复合,从而促使光生电子从磷酸银晶体表面快速分离,减轻了磷酸银的光电子腐蚀,同时也提高了复合物的光催化活性。  相似文献   

5.
刘素芹  王松  戴高鹏  鲁俊  刘科 《物理化学学报》2015,30(11):2121-2126
在二甲基甲酰胺溶液中, 通过简单的沉淀法制备了纳米Ag2CO3和碳纳米管(CNT)的复合物. 用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)和紫外-可见(UV-Vis)漫反射光谱(DRS)表征了所制备的Ag2CO3/CNT复合物, 通过在可见光下降解甲基橙(MO)检测了样品的光催化活性. 结果表明, 纳米Ag2CO3颗粒与CNT结合良好. CNT的含量为1.5% (w)的Ag2CO3/1.5% CNT复合物活性最高, 经过60 min 的降解, 甲基橙的降解率达到93%. 与纯相纳米Ag2CO3比较, CNT的加入还提高了Ag2CO3的稳定性, 经过三次循环降解, Ag2CO3/1.5% CNT复合物还能降解81%的甲基橙, 而纳米Ag2CO3只能降解59.5%的甲基橙. 其活性和稳定性提高的原因是由于CNT的高导电性, 它不仅促进了电子-空穴对的分离, 还能快速转移产生的光生电子.  相似文献   

6.
赵娣  张博  段召娟  李爱昌 《无机化学学报》2016,32(12):2158-2164
采用电化学方法制备Ag_2S/Ag_3PO_4/Ni复合薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见漫反射光谱(UVVis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜的光催化机理进行了探索。结果表明:最佳工艺制备的Ag_2S/Ag_3PO_4/Ni是由均匀的球形纳米颗粒构成的薄膜,其光催化活性明显优于纯Ag_3PO_4/Ni薄膜和纯Ag_2S/Ni薄膜,且在保持薄膜光催化活性基本不变的前提下可循环使用6次。提出了可见光下Ag_2S/Ag_3PO_4/Ni复合薄膜光催化降解罗丹明B的反应机理。  相似文献   

7.
采用一步水热合成法制备了BiPO4、Ag3PO4和BiPO4/Ag3PO4复合光催化剂,通过X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、紫外-可见漫反射(UV-Vis DRS)等表征手段对其组成结构、形貌及光吸收性质进行了表征,结果表明Ag3PO4呈块状结构,BiPO4则分布在其表面,形成的BiPO4/Ag3PO4复合光催化剂具有单斜相和立方晶相结构,带边吸收拓宽至571 nm。以甲基橙和加替沙星为目标污染物,考察了BiPO4/Ag3PO4复合光催化剂在模拟太阳光照射下的降解矿化能力,结果表明复合催化剂比单一催化剂的降解矿化能力更强,稳定性更好。此外,自由基捕获实验表明空穴是该光催化过程中的主要活性物种,·O2-次之。p-n异质结的形成使BiPO4/Ag3PO4复合光催化剂具有较强的电子空穴分离能力是光催化活性提高的主要原因,这与光电流和电化学阻抗谱测试结果相一致。基于以上结果,文中对BiPO4/Ag3PO4光催化降解有机污染物的机理进行了推测。  相似文献   

8.
采用一步水热法制备Bi2MoO6/BiVO4复合光催化剂. 利用X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)等手段对其晶体结构和微观结构进行了表征. 结果表明, Bi2MoO6纳米粒子沉积在BiVO4纳米片表面从而形成异质结结构. 紫外-可见漫反射光谱(UV-Vis DRS)表明所制备的Bi2MoO6/BiVO4异质结较纯相Bi2MoO6和BiVO4对可见光吸收更强. 由于形成异质结结构及其光吸收性能使Bi2MoO6/BiVO4 光催化活性有较大提高. 可见光下(λ>420 nm)光催化降解罗丹明B (RhB)实验结果表明,Bi2MoO6/BiVO4光催化活性较纯相Bi2MoO6和BiVO4高. Bi2MoO6/BiVO4样品光催化性能提高的原因是Bi2MoO6和BiVO4形成异质结, 从而有效抑制光生电子-空穴对的复合, 增大了可见光吸收范围及比表面积.  相似文献   

9.
采用水热法制备粒径为1~2 μm的BiVO4微米片,然后在微米片表面沉积不同含量的Ag2CO3颗粒,制备Ag2CO3/BiVO4复合微米片光催化剂。利用X射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FTIR)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光(PL)光谱、瞬态光电流-时间响应对催化剂进行表征。以可见光为光源,罗丹明B为降解对象进行光催化活性测试。结果表明,复合适量Ag2CO3有利于提高光催化剂的比表面积,改善催化剂的表面性能。活性测试结果表明,当复合10%(w/w)Ag2CO3时,Ag2CO3/BiVO4光催化活性最佳,比纯BiVO4提高4.4倍。光致发光(PL)光谱、瞬态光电流-时间响应测试结果表明,复合Ag2CO3能有效抑制光生电子与空穴的复合。自由基捕获实验结果表明,该体系的活性氧物质为空穴和羟基自由基。Ag2CO3/BiVO4复合光催化剂活性提高的原因,是较宽带隙的Ag2CO3与较窄带隙的BiVO4形成的异质结有效抑制了光生电子与空穴的复合,同时两者适宜的能带结构保证产生更多的空穴,从而具有更强的氧化能力。  相似文献   

10.
以静电纺丝技术制备的TiO2纳米纤维为基质,通过溶剂热法制备了异质结型稀土Ce掺杂Bi2MoO6/TiO2复合纳米纤维。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)以及荧光光谱(PL)等分析测试手段对样品的物相、形貌和光学性能等进行表征。以罗丹明B为模拟有机污染物,研究了样品的可见光催化性能。结果表明:在稀土掺杂样品中,Ce离子进入Bi2MoO6晶格,部分取代Bi3+,导致晶胞膨胀,晶格畸变,形成缺陷;与TiO2复合形成异质结,有利于光生电荷的产生、转移和有效分离,从而提高TiO2纳米纤维的光催化活性。可见光照射180 min,罗丹明B的降解率达到95.1%。经5次循环光催化降解活性基本不变,样品具有良好的光催化稳定性。  相似文献   

11.
用电化学方法制备Ag3PO4/Ni薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜光催化降解机理进行了探索。结果表明:最佳工艺下制备的Ag3PO4/Ni薄膜具有致密的层状表面结构,是由多晶纳米颗粒构成的薄膜。薄膜具有较高的光催化活性和突出的光催化稳定性,可见光下催化作用60 min,薄膜光催化罗丹明B的降解率是多孔P25 Ti O2/ITO纳米薄膜(自制)的2.3倍;在保持薄膜光催化活性基本不变的前提下可循环使用6次。给出了可见光下薄膜光催化降解罗丹明B的反应机理。  相似文献   

12.
以磷酸铵和氧化石墨烯悬浊液的混合液为电解液,采用电化学共沉积法制备了Ag3PO4基GO/Ag3PO4/Ni复合薄膜。运用扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线衍射(XRD)、拉曼光谱(Raman)和紫外可见漫反射光谱(UV-Vis DRS)等对其形貌、物相和光谱特性进行分析。最佳工艺制备的GO/Ag3PO4/Ni复合薄膜呈现出GO包覆在直径为100 nm左右的Ag3PO4纳米球外的表面形貌。GO片与Ag3PO4纳米球之间存在强电荷相互作用。与单独的Ag3PO4纳米球相比,GO片的附着导致带隙缩小,可见光区的吸收率增强。可见光下考察了复合薄膜降解罗丹明B的光催化活性和稳定性,并利用荧光光谱和捕获剂法对薄膜的光催化机理进行了探索。结果表明,GO片的加入不仅显著提高了Ag3PO4的光催化活性,而且提高了Ag3PO4的结构稳定性。光催化降解罗丹明B 60 min时,GO/Ag3PO4/Ni复合薄膜的降解率是Ag3PO4/Ni薄膜的1.32倍。在保持薄膜光催化活性基本不变的前提下可循环使用7次。GO优异的电荷传导性能,以及Ag3PO4纳米球与GO片之间的正协同效应是提高复合薄膜光催化性能的主要原因。  相似文献   

13.
通过沉积法和离子交换法成功地制备了Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化剂。利用X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸附-脱附等温线、紫外-可见漫反射光谱、荧光光谱等手段对样品进行了表征。通过降解罗丹明B考察其可见光催化活性及稳定性,研究了硫化钠与磷酸银物质的量的比值(n_(Na_2S)/n_(Ag_3PO_4))、g-C_3N_4添加量对所制备复合光催化材料性能的影响,同时对光催化机理进行了探讨。结果表明,随着n_(Na2S)/n_(Ag3PO4)的增加,所得复合催化材料活性先增加后降低;当n_(Na2S)/n_(Ag_3PO_4)为1.5%、g-C_3N_4与Ag_3PO_4的质量比为3∶7时制备的催化剂ASC1.5的光催化活性最好,在可见光照射下,40 min内可将罗丹明B完全降解,且5次循环使用后仍保持较高的催化活性。和Ag_3PO_4相比,Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化材料的活性与稳定性都得到明显提高,这主要归因于复合催化剂比表面积和孔结构的增加,载流子分离效率的提高。光催化机理研究表明,空穴(h~+)、超氧阴离子自由基(·O~(2-))和羟基自由基(·OH)都是光催化过程中的主要活性物种。三者作用大小依次为:h~+·O~(2-)·OH。  相似文献   

14.
采用机械球磨法成功制备Ag_3PO_4/MoS_2纳米片复合催化剂。运用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis)和荧光发射光谱(PL)对复合催化剂的结构和形貌进行了表征。结果表明,Ag_3PO_4纳米粒子均匀地附着在MoS_2纳米片层结构上,两者形成紧密结合。以亚甲基蓝为模拟污染物,研究复合催化剂在可见光照射下的光催化特性;通过循环实验考察复合催化剂的稳定性。结果显示,含有1%的MoS_2纳米片与Ag_3PO_4形成的复合催化剂在30 min内对亚甲基蓝的降解率为95%,其降解动力学常数是纯相Ag_3PO_4的2倍。经过5次循环实验后复合催化剂对于亚甲基蓝的降解率为84%,而纯Ag_3PO_4对于亚甲基蓝的降解率仅为35%。Ag_3PO_4/MoS_2纳米片复合催化剂具有优良的光催化活性和高稳定性,主要归因于二硫化钼纳米片与磷酸银形成异质结,磷酸银激发的电子和二硫化钼纳米片产生的空穴直接复合,从而促使光生电子从磷酸银晶体表面快速分离,减轻了磷酸银的光电子腐蚀,同时也提高了复合物的光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号