首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex formation equilibria between Ag(I) and thiourea or N-alkyl-substituted thioureas have been investigated in n-propanol by potentiometry at 10 °C intervals from 5 to 50 °C. Stepwise formation of tris-coordinated AgLn (n = 1-3) complexes has been found for the majority of the ligands. ΔH and ΔS values for the complex formation reactions have been evaluated from the dependence of ln βn on temperature. The alkyl-substituents affect the ligand affinities in different ways in relation with the coordination level n.The reactions are exothermic with few exceptions. Enthalpy favoured complex formation with negative dependence of ΔG on temperature (ΔS > 0) have been found.The enthalpy and entropy changes for the stepwise complex formation equilibria are correlated by two linear compensative relationships with the same isoequilibrium temperature 50-51 °C.  相似文献   

2.
Electrochemical applications of graphene are of great interest to many researchers as they can potentially lead to crucial technological advancements in fabrication of electrochemical devices for energy production and storage, and highly sensitive sensors. There are many routes towards fabrication of bulk quantities of chemically modified graphenes (CMG) for applications such as electrode materials. Each of them yields different graphene materials with different functionalities and structural defects. Here, we compare the electrochemical properties of five different chemically modified graphenes: graphite oxide, graphene oxide, thermally reduced graphene oxide, chemically reduced graphene oxide, and electrochemically reduced graphene oxide. We characterized these materials using transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry, which allowed us to correlate the electrochemical properties with the structural and chemical features of the CMGs. We found that thermally reduced graphene oxide offers the most favorable electrochemical performance among the different materials studied. Our findings have a profound impact for the applications of chemically modified graphenes in electrochemical devices.  相似文献   

3.
The design and preparation of stable cyanide-bearing six-coordinate complexes of formula [MIII(L)(CN)x](x + l − m)− (M = trivalent transition metal ion and L = polydentate blocking ligand) are summarized here. Their use as ligands towards either fully hydrated metal ions or coordinatively unsaturated preformed species, to afford a wide variety of low-dimensional metal assemblies whose nuclearity, dimensionality and magnetic properties can be tuned, is also reviewed. Special emphasis is put on the appropriate choice of the end-cap ligand L whose denticity determines the number of coordinated cyanide groups in the mononuclear precursors. Among the different new spin topologies obtained through this rational synthetic strategy, ferromagnetically coupled 4,2-ribbon like bimetallic chains which exhibit slow magnetic relaxation and hysteresis effects (chain as magnets) are one of the most appealing and constitute the heart of the present contribution.  相似文献   

4.
The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon‐based nanomaterials. We summarize the state‐of‐the‐art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.  相似文献   

5.
The review covers main applications of conducting polymers in chemical sensors and biosensors. The first part is focused on intrinsic and induced receptor properties of conducting polymers, such as pH sensitivity, sensitivity to inorganic ions and organic molecules as well as sensitivity to gases. Induced receptor properties can be also formed by molecularly imprinted polymerization or by immobilization of biological receptors. Immobilization strategies are reviewed in the second part. The third part is focused on applications of conducting polymers as transducers and includes usual optical (fluorescence, SPR, etc.) and electrical (conductometric, amperometric, potentiometric, etc.) transducing techniques as well as organic chemosensitive semiconductor devices. An assembly of stable sensing structures requires strong binding of conducting polymers to solid supports. These aspects are discussed in the next part. Finally, an application of combinatorial synthesis and high-throughput analysis to the development and optimization of sensing materials is described.  相似文献   

6.
In spite of their low cost, high activity, and diversity, metal oxide catalysts have not been widely applied in vanadium redox reactions due to their poor conductivity and low surface area. Herein, SnO2/reduced graphene oxide (SnO2/rGO) composite was prepared by a sol–gel method followed by high-temperature carbonization. SnO2/rGO shows better electrochemical catalysis for both redox reactions of VO2+/VO2+ and V2+/V3+ couples as compared to SnO2 and graphene oxide. This is attributed to the fact that reduced graphene oxide is employed as carbon support featuring excellent conductivity and a large surface area, which offers fast electron transfer and a large reaction place towards vanadium redox reaction. Moreover, SnO2 has excellent electrochemical activity and wettability, which also boost the electrochemical kinetics of redox reaction. In brief, the electrochemical properties for vanadium redox reactions are boosted in terms of diffusion, charge transfer, and electron transport processes systematically. Next, SnO2/rGO can increase the energy storage performance of cells, including higher discharge electrolyte utilization and lower electrochemical polarization. At 150 mA cm−2, the energy efficiency of a modified cell is 69.8%, which is increased by 5.7% compared with a pristine one. This work provides a promising method to develop composite catalysts of carbon materials and metal oxide for vanadium redox reactions.  相似文献   

7.
朱东波  刘慧慧  邵翔 《化学通报》2017,80(11):1036-1042
石墨相氮化碳(g-C_3N_4)因为其特殊的层状结构及电子性质在催化和光催化领域里受到广泛关注和研究。本文以异丙醇及异丙醇-水混合溶液为介质对g-C_3N_4粉末进行超声液相剥离,并利用原子力显微镜详细表征了剥离后的溶液分散至云母、高定向热解石墨(HOPG)、Au(111)等不同衬底表面的结果。发现溶液经10h超声后,g-C_3N_4被剥离成尺寸约100nm左右的扁平颗粒,但无法形成完美的超薄层结构。这可能是由于经热聚合法合成的g-C_3N_4本身晶化程度较低所致。  相似文献   

8.
Two-dimensional (2D) molybdenum disulfide (MoS2) is the most mature material in 2D material fields owing to its relatively high mobility and scalability. Such noticeable properties enable it to realize practical electronic and optoelectronic applications. However, contact engineering for large-area MoS2 films has not yet been established, although contact property is directly associated to the device performance. Herein, we introduce graphene-interlayered Ti contacts (graphene/Ti) into large-area MoS2 device arrays using a wet-transfer method. We achieve MoS2 devices with superior electrical and photoelectrical properties using graphene/Ti contacts, with a field-effect mobility of 18.3 cm2/V∙s, on/off current ratio of 3 × 107, responsivity of 850 A/W, and detectivity of 2 × 1012 Jones. This outstanding performance is attributable to a reduction in the Schottky barrier height of the resultant devices, which arises from the decreased work function of graphene induced by the charge transfer from Ti. Our research offers a direction toward large-scale electronic and optoelectronic applications based on 2D materials.  相似文献   

9.
Graphene research is currently at the frontier of electrochemistry. Many different graphene‐based materials are employed by electrochemists as electrodes in sensing and in energy‐storage devices. Because the methods for their preparation are inherently different, graphene materials are expected to exhibit different electrochemical behaviors depending on the functionalities and density of defects present. Electrochemical treatment of these “chemically modified graphenes” (CMGs) represents an easy approach to alter surface functionalities and consequently tune the electrochemical performance. Herein, we report a preliminary electrochemical characterization of four common chemically modified graphenes, namely: graphene oxide, graphite oxide, chemically reduced graphene oxide, and thermally reduced graphene oxide. These CMGs were compared with graphite as a reference material. Cyclic voltammetry was used to ascertain the chemical functionalities present and to understand the potential ranges in which the materials were electroactive. Electrochemical treatment with either an oxidative or a reductive fixed potential were then carried out to activate these chemically modified graphenes. The effects of such electrochemical treatments on their electrocatalytic properties were then investigated by cyclic voltammetry in the presence of well‐known redox probes, such as [Fe(CN)6]4?/3?, Fe3+/2+, [Ru(NH3)6]2+/3+, and ascorbic acid. Thermally reduced graphene oxide exhibited the best electrochemical behavior amongst all of the CMGs, with the fastest rate of heterogeneous electron transfer (HET) and the lowest overpotentials. These findings will have far‐reaching consequences for the evaluation of different CMGs as electrode materials in electrochemical devices.  相似文献   

10.
The acid dissociation constant (pKa) of small, biological molecules is an important physical property used for investigating enzyme mechanisms and inhibitor design. For phosphorus-containing molecules, the 31P nuclear magnetic resonance (NMR) chemical shift is sensitive to the local chemical environment, particularly to changes in the electronic state of the molecule. Taking advantage of this property, we present a 31P NMR approach that uses inorganic phosphate buffer as an internal pH reference to determine the pKa values of the imide and second diphosphate of uridine-5′-diphosphate compounds, including the first reported values for UDP-GlcNAc and UDP-S-GlcNAc. New methods for using inorganic phosphate buffer as an internal pH reference, involving mathematical correction factors and careful control of the chemical shift reference sample, are illustrated. A comparison of the newly determined imide and diphosphate pKa values of UDP, UDP-GlcNAc, and UDP-S-GlcNAc with other nucleotide phosphate and thio-analogs reveals the significance of the monosaccharide and sulfur position on the pKa values.  相似文献   

11.
A comparison of the performance of graphene-based supercapacitors is difficult, owing to the variety of production methods used to prepare the materials. To the best of our knowledge, there has been no systematic investigation into the effect of the graphene production method on the supercapacitor performance. In this work, we compare graphene produced through several routes. This includes anodic and cathodic electrochemically exfoliated graphene, liquid phase exfoliated graphene, graphene oxide, reduced graphene oxide, and graphene nanoribbons. Graphene oxide exhibited the highest capacitance of approximately 154 F g−1 in 6 M KOH at 0.5 A g−1 attributed to oxygen functional groups giving an additional pseudocapacitance and preventing significant restacking; however, the capacitance retention was poor, owing to the low conductivity. In comparison, the anodic electrochemically exfoliated graphene exhibited a capacitance of approximately 44 F g−1, the highest of the ‘pure’ graphene materials, which all exhibited superior capacitance retention, owing to their higher conductivity. The cyclability of all of the materials, with the exception of reduced graphene oxide (70 %), was found to be greater than 95 % after 10 000 cycles. These results highlight the importance of matching the graphene production method with a specific application; for example, graphene oxide and anodic electrochemically exfoliated graphene would be best suited for high energy and power applications, respectively.  相似文献   

12.
Diisopropyltetrahydroquinoxalinedione derivatives are synthesized from the reaction of various catechols with N,N′-diisopropylethylenediamine. Both chemical and electrochemical methods give the same products. While the chemical synthesis is faster, the electrochemical synthesis provides higher yields.  相似文献   

13.
Mixed-ligand zinc complexes with N,N,N′,N′-tetramethylethylenediamine (tmen) and R-salicylaldehyde N(4)-allyl thiosemicarbazones (R: 3-OCH3 (L1), 5-Br(L2)), [ZnL1,2(tmen)], were synthesized and the complexes were characterized by elemental analysis, atomic absorption spectrometer, magnetic susceptibility, molar conductivity, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectra and IR, UV–Vis, 1H NMR and 15N spectroscopies. Crystal of [ZnL2(tmen)] have a slightly distorted square pyramid involving O, N, S atoms of thiosemicarbazone and one N atom of tmen in basal plane and the other N atom of tmen in apex of the pyramid. The non-coordinated allyl group is disordered.  相似文献   

14.
In the course of the chemical synthesis of human protein mitogaligin, we present here a simple method to prepare peptide thioesters using Fmoc chemistry. The hydroxyl side chain of serine was reacted with a trichloroacetimidate Wang resin to anchor it on solid phase. After peptide elongation and orthogonal unmasking of the C-terminus, the amino thioester was introduced under optimized conditions to avoid epimerization.  相似文献   

15.
Graphene, an individual two-dimensional, atomically thick sheet of graphite composed of a hexagonal network of sp(2) carbon atoms, has been intensively investigated since its first isolation in 2004, which was based on repeated peeling of highly oriented pyrolyzed graphite (HOPG). The extraordinary electronic, thermal, and mechanical properties of graphene make it a promising candidate for practical applications in electronics, sensing, catalysis, energy storage, conversion, etc. Both the theoretical and experimental studies proved that the properties of graphene are mainly dependent on their geometric structures. Precise control over graphene synthesis is therefore crucial for probing their fundamental physical properties and introduction in promising applications. In this Minireview, we highlight the recent progress that has led to the successful chemical synthesis of graphene with a range of different sizes and chemical compositions based on both top-down and bottom-up strategies.  相似文献   

16.
Precursors and catalysts play vital roles in chemical reactions. Considerable efforts have been devoted to the investigation of catalysts for graphene growth by chemical vapor deposition in recent years. However, there has been little research on precursors because of a lack of innovation in term of creating a controllable feeding method. Herein, we present a novel sustained and controlled release approach, and develop a convenient, safe, and potentially scalable feeding system with the assistance of matrix materials and a simple portable feeder. As a result, a highly volatile liquid precursor can be fed accurately to grow large-area, uniform graphene films with optimal properties. This feeding approach will further benefit the synthesis of other two-dimensional materials from various precursors.  相似文献   

17.
Shin-ichi Naya 《Tetrahedron》2005,61(31):7384-7391
The synthesis and properties of 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-trione] derivatives 8a,b were studied. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. The rotational barrier (ΔG) around the exocyclic double bond of 8a was found to be 12.55 kcal mol−1 by the variable temperature 1H NMR measurement. The electrochemical properties of 8a,b were also studied by CV measurement. Furthermore, the transformation of 8a,b to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones 16a,b was accomplished by oxidative cyclization using DDQ and subsequent ring-opening and ring-closure. The structural details and chemical properties of 16a,b were clarified. Reaction of 16a with deuteride afforded C13-adduct 19 as the single product, and thus, the methano-bridge controls the nucleophilic attack to prefer endo-selectivity. The photo-induced oxidation reaction of 16a and a vinylogous compound, 3-methylcyclohepta[4,5]furo[2,3-d]pyrimidine-2,4(3H)-dione 2a, toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 6.1-64.0 (for 16a) and 2.7-17.2 (for 2a), respectively.  相似文献   

18.
We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG800 diamine was glutarylated, the mono-adduct NH2-PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy.  相似文献   

19.
Bithienyl-1,3-benzothiazole derivatives were synthesised by reacting various 5-formyl-5′-alkoxy- or 5-formyl-5′-N,N-dialkylamino-2,2′-bithiophenes with ortho-aminobenzenethiol in good to excellent yields. Evaluation of the fluorescence properties of these compounds was carried out. They show strong fluorescence in the 450-600 nm region, as well as high quantum yields and large Stokes’ shifts.  相似文献   

20.
N,N,N′,N′-Tetramethylmethanediamine (1a), N,N,N′,N′-tetramethylethanediamine (1b), N,N,N′,N′-tetramethyl-1,3-propanediamine (1c), and N,N,N′,N′-tetramethyl-1,6-hexanediamine (1d) were reacted at 25 °C with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (2a), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione (2b), 2-thenoyltrifluoroacetone (2c), and 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione (2d) to form the ionic adducts 3-18. 1,4,7,10-Tetraazacyclododecane (1e) reacted at 25 °C with β-diketones (2a-d) and 1,1,1-trifluoro-2,4-pentanedione (2e) to give ionic solids 19-23 in good yields. Some of the products are liquid at 25 °C and are thermally stable over long liquid ranges as determined by thermal gravimetric analyses. Single-crystal X-ray structure determinations show that compounds 9 and 21 crystallize in the monoclinic space groups P2(1)/c and P2(1)/n, respectively. All the new compounds were characterized by 1H, 19F and 13C NMR, electrospray MS and/or elemental analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号