首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以NaA,NaY和NaZSM-5分子筛为研究对象,以CO2为吸附质,通过吸附数据测定,研究分子筛材料微孔结构的吸附表征方法.计算了NaA、NaY和NaZSM-5分子筛的微孔孔容,其中基于D-A方程的微孔孔容值与文献值一致.根据CO2吸附数据分析了3种分子筛的孔径分布.发现对于含有球形孔结构的NaA,NaY分子筛和NaA+NaY混合物,HK(Horvath-Kawazoe)球形模型(HKsphere)能够很好地描述其孔径分布,而HK柱状模型(HKcylinder)能够很好地表征具有柱状孔道结构的NaZSM-5分子筛.单一的HK方法不能表征同时含有柱状孔和球形孔的NaA+NaZSM-5混合物,使用HKcylinder只能得到混合物材料中柱状孔的分布情况,而使用HKsphere只能得到球形孔的分布情况.  相似文献   

2.
关岳  孙钦廉  邬行彦  卢珊  陈虹 《化学学报》1990,48(5):424-430
本文比较了BET多层吸附模型, Pickett有限层吸附模型以及Dubinin微孔填充模型, 并在此基础上, 假定多层吸附和微孔填充两种过程同时发生, 导出一个修正的吸附方程式, 并说明修正后的方程具有较大的适用性和准确性, 在孔径分布的测定中, 用H2替代He作为载气, 大大降低测定成本, 应用微机实现数据运算过程微机化和结果的图谱化, 大大缩短处理时间。  相似文献   

3.
测定了3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭 (SSAC) 和剑麻基活性碳纤维 (SACF) 的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征。结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的极微孔;在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上。两者相比,SACF的中孔量和平均孔径更大。3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

4.
采用基于三维Ono-Kondo方程的格子密度函数理论(LDFT)模型模拟了氢气在A和X型微孔沸石上的超临界吸附等温线. 根据沸石孔的尺寸和形状, LDFT模型将氢分子在孔中的吸附位分布近似为简单立方、面心立方和体心立方的团簇结构. 模拟结果表明, LDFT模型可有效地用于描述氢气在A和X型沸石上的单层或多层超临界吸附行为. 模拟所得的吸附等温线与实验测定结果吻合. 特别是, LDFT模型中的氢-沸石作用势能参数的准确性得到了Lennard-Jones(12-6)势能方法的有效验证. 因此, LDFT模型被用于预测了更宽温度和压力范围内氢气在X沸石上的超临界吸附.  相似文献   

5.
测定了3种植物基活性炭材料:椰壳活性炭(CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维(SACF)的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征.结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的板微孔:在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上.两者相比,SACF的中孔量和平均孔径更大,3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

6.
通过密度函数理论(DFT-DensityFunctionalTheory)对炭质吸附剂的孔径分布进行了表征。该法以多孔固体上N2吸附分子模型为依据,用一种方法对多孔固体的孔径分布从微孔到大孔范围进行确定。本文用该法对自制的聚丙烯腈活性炭纤维、国产煤质活性炭及日本产活性炭微球等六种炭质吸附剂的孔径分布进行了表征。  相似文献   

7.
本文对BET吸附方程在相对压力大于0.35以后线性破坏呈现的扭折部分作了诠释。据此,利用BET图推导出一种不同于前人的计算微孔孔径的简便方法。与文献中介绍的各种方法进行了对比,从最可几孔、孔径分布范围以及分布图形看与Broekhoff计算法符合最好,与Mikhail计算法也符合较好。用“尺码分子”实验进行校核也能很好地一致。  相似文献   

8.
利用H_4EDTA-NaOH共处理的方法制备了具有不同孔径分布的多级微-介孔NaY分子筛。运用XRD、N_2吸附、SEM、TEM对其结构进行了表征。采用频率响应(FR)和智能重量分析仪(IGA)技术研究了苯在改性后的多级孔NaY分子筛及微孔NaY分子筛上的吸附和传质性能。结果表明,适当的酸碱处理不会改变分子筛的晶体结构,但可调变NaY分子筛的精细结构;介孔的引入降低了分子在孔道中的扩散阻力,较大的孔径和较好的孔道贯通性有利于扩散和吸附中心的可接近性;对于微孔NaY分子筛,苯在分子筛上的吸附过程为其传质过程的速控步骤,对于酸碱处理的多级孔NaY分子筛,分子筛颗粒中微/介孔内的扩散过程及分子筛微-介孔孔道间的分子交换过程是传质过程的速控步骤。  相似文献   

9.
密度泛函与分子模拟计算介孔孔径分布比较   总被引:1,自引:0,他引:1  
用巨正则系综Monte Carlo模拟(GCMC)方法和密度泛函理论( DFT)结合统计积分方程(SIE)计算了介孔材料的孔径分布.为比较这两种方法,以77 K氮气在介孔活性碳微球中的吸附数据为依据,求出其孔径分布.在GCMC模拟和DFT计算中,流体分子模型化为单点的Lerrnard-Jones球;流体分子与吸附剂材料之间的作用采用平均场理论中的10-4-3模型.在DFT方法中,自由能采用Tarazona 提出的加权近似密度泛函方法(weighted density approximation,WDA)求解.结果表明,对于孔径大于1.125 nm的介孔材料,GCMC和DFT两种方法都可以用来研究介孔材料的孔径分布;对于小于1.125 nm的介孔材料,不能用DFT方法计算孔径分布(DFT方法本身的近似产生了误差),只能用分子模拟方法.  相似文献   

10.
巨正则系综Monte Carlo模拟方法确定活性炭的微孔尺寸   总被引:3,自引:0,他引:3  
根据299 K下甲烷在活性炭中的吸附实验数据,通过调节狭缝微孔的孔宽参数,利用巨正则系综Monte Carlo(GCEMC)方法得到不同孔宽下流体的微观结构以及吸附等温线.比较并拟合模拟结果和实验数据,确定了活性炭微孔的平均孔宽,为下一步求解微孔尺寸分布以及为预测吸附剂在不同温度下吸附不同吸附质分子时的吸附性能提供了基础与指导.模拟中,甲烷分子采用单点Lennard-Jones球型分子模型,活性炭用狭缝孔来近似表征,流体分子与单个狭缝墙的相互作用采用著名的Steele的10-4-3势能模型.模拟表明,此方法为考察介孔材料的微孔分布以及微孔平均孔宽提供了新的思路.  相似文献   

11.
Using numerical and analytical methods, a model for microporous carbon adsorbents with slit-shaped pores of different widths was developed. Such pores are formed during activation procedure by the removal of the hexagonal carbon layers burnt out in a graphite-like crystallites. Dubinin’s theory of volume filling of micropores was used to calculate methane adsorption equilibria on these model adsorbents. Isobaric dependences of methane adsorption on pore width, specific micropore volumes, and the specific surface were plotted in the range of pressures from 1 to 10 MPa. It was found that the isobaric adsorption curves had a maximum the position of which depends on both the structural-energy characteristics of the adsorbent and thermodynamic conditions chosen to operate the adsorption system. As pressure increased, the maximum of adsorption shifts to the porous systems with wider pores and larger micropore volume.  相似文献   

12.
The mean values of the characteristic energy of C6H6 adsorption in large micropores were calculated from the adsorption isotherms of benzene vapor on carbon blacks. The supermicropores are characterized by the significant dispersion of the adsorption potential resulted from the pore-size distribution, which imparts the polymolecular character to adsorption. The effect of enhancement of the characteristic energy of adsorption was analyzed, which was caused by the overlap of the force fields of the opposite pore walls and the reduction of the adsorption film surface with micropore volume filling. The both factors are comparable by magnitude and depend on the micropore sizes.  相似文献   

13.
In this study, the effect of coal micropores on the adsorption properties, especially the Langmuir pressure (P L ), was investigated by testing 11 coal samples from Northern China. The adsorption of CO2 at 273 K was utilized to analyze the pore size distribution. The results of these coals show that micropore volume and micropore surface area are the major factors affecting the Langmuir volume (V L ) but have weaker effects on P L . Micropore filling theory considers that some smaller micropores with an obvious overlapping adsorption force cause volume filling adsorption. These micropores firstly reach saturated adsorption, controlling the adsorption volume at the low-pressure stage and thus have a great effect on P L . Four times the methane molecular diameter, 1.5 nm, was assumed as the critical pore size with obvious overlapping adsorption force. The relationship between P L and the proportion of the pore volume below 1.5 nm to the micropore volume was investigated, and it was found that the higher the volume proportion of these small micropores was, the smaller the P L was, though two data points deviated from this trend. The reason for the anomalous coal samples could be the deviation from the assumed critical pore size of 1.5 nm for volume filling and the effects of the various micropore surface properties, which await further study. The micropore surface increases with increasing coal rank, as does V L . The proportion of pore volume below 1.5 nm increases with coal rank, and P L reverses. However, these relationships are discrete.  相似文献   

14.
An enhancement in characteristic energy of adsorption in large micropores is analyzed. The effect is due to the overlapping of potential fields from opposite walls of pores and to reduction of the surface adsorption film on filling the micropore volume. The effects of both factors are comparable in magnitude and dependent on the micropore size. This work is devoted to memory of the professor W. Schirmer  相似文献   

15.
Measurements of water adsorption equilibrium in a carbon molecular sieve are undertaken in order to gain insight into the nature of water adsorption in carbon micropores. The measurements are taken at low concentrations to emphasize the role of oxygen-containing functional groups in the adsorption of water. Comparisons are made with previously published water adsorption data at higher concentrations to provide a data set spanning a wide range of loading. The assembled data set provides an opportunity for comparison of various theories for prediction of water adsorption in carbon micropores. Shortcomings of current theories are outlined, and an analytical theory that is free of these deficiencies is proposed in this investigation. With the consideration of micropore volume and pore size distribution, the experimental data and proposed isotherm model are consistent with previous studies of Takeda carbon molecular sieves. Also investigated is the uptake kinetics of water, which is characterized by a Fickian diffusion mechanism. The Maxwell-Stefan formulation is applied to characterize the dependence of the diffusional mobility upon loading.  相似文献   

16.
Our study using the nonlocal density functional theory (NDFT) showed that active coals might have a bidisperse microporous structure. The binomial equation of the theory of volume filling of micropores (TVFM) approximates well the nitrogen adsorption isotherms at relative pressures from 1 × 10−4 to 0.2. The dominant micropore sizes calculated in terms of the characteristic adsorption energy lie in the region of the maximum of the size distribution of micropores calculated by the NDFT method. The tentative micropore sizes can be determined from the modified second term of the TVFM equation. The Henry and BET equations describe very limited regions of the nitrogen adsorption isotherm on microporous active coals.  相似文献   

17.
The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.  相似文献   

18.
K. Wang  D.D. Do 《Adsorption》1999,5(1):25-37
This paper deals with the prediction of adsorption equilibrium and kinetics of hydrocarbons onto activated carbon samples having different micropore size distribution (MPSD). The microporous structure of activated carbon is characterised by the distribution of slit-shaped micropores, which is assumed to be the sole source of surface heterogeneity. The interaction between adsorbate molecule and pore walls is described by the Lennard-Jones potential theory. Different adsorbates have access to different pore size range of activated carbon due to the size exclusion, a phenomenon could have a significant influence on both multicomponent equilibria and kinetics. Activated carbons with three different MPSDs are studied with ethane and propane as the two model adsorbates. The Heterogeneous Macropore Surface Diffusion model (HMSD) is employed to simulate adsorption kinetics. The simulation results show that the MPSD is an important factor affecting both the multicomponent equilibria and kinetics.  相似文献   

19.
Water adsorption hysteresis is one of the most important phenomena observed during the interaction of water with hydrophobic surfaces. Adsorption hysteresis in micropores has strong relevance to the structure of adsorbed water. We used three typical models (cluster, monolayer, and uniform distribution structure models) to determine the structure of the water molecules adsorbed in hydrophobic slit-shaped carbon micropores. In each model, stabilization energy profiles were calculated for various fractional fillings by using the interaction potential theory. Simultaneously, molecular dynamics (MD) simulations of water adsorbed in the micropore of 1.1 nm pore width, which shows significant adsorption hysteresis, were performed to determine the kinetics of the observed structural transformations. The transformations between monolayer and cluster were slow, that is, kinetically forbidden at the fractional filling of 0.2 and 0.6, whereas the cluster-uniform distribution structure and uniform distribution structure-monolayer transformations were kinetically allowed. The kinetically forbidden transformation resulted in the occurrence of metastable structure of adsorbed water and was responsible for the observed adsorption hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号