首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A complexometric method for the determination of mercury in presence of other metal ions based on the selective masking ability of potassium bromide towards mercury is described. Mercury(II) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against zinc sulfate solution at pH 5–6 using xylenol orange as the indicator. A known excess of 10% solution of potassium bromide is then added and the EDTA released from Hg-EDTA complex is titrated against standard zinc sulfate solution. Reproducible and accurate results are obtained for 8 mg to 250 mg of mercury(II) with a relative error ± 0.28% and standard deviations ≤0.5 mg. The interference of various ions is studied. This method was applied to the determination of mercury(II) in its alloys. Received April 18, 2001 Revision October 10, 2001  相似文献   

2.
 A simple, rapid and accurate complexometric method is proposed for the determination of titanium(IV) where sodium potassium tartrate or ascorbic acid were used as masking agents. In the presence of diverse metal ions, titanium is first complexed with excess of EDTA and surplus EDTA is then titrated at pH 5–6 with zinc sulfate, xylenol orange being used as indicator. An excess of 5% aqueous sodium potassium tartrate is then added to displace the complexed EDTA from the Ti-EDTA complex quantitatively, which is titrated with zinc sulfate. Also, ascorbic acid may be used as the releasing agent. The methods work well in the range 1–53 mg of Ti(IV) for sodium potassium tartrate with relative errors ± 0.28% and standard deviations ≤ 0.16 mg. For ascorbic acid the range is 1.00–30.00 mg of Ti(IV) with relative errors of ± 0.40% and standard deviations of ≤ 0.05 mg Received October 9, 2001; accepted August 2, 2002  相似文献   

3.
 An indirect complexometric method is described for the determination of zinc(II) using 2,2′-bipyridyl as masking agent. Zinc(II) in a given sample solution is initially complexed with an excess of EDTA and surplus EDTA is titrated with lead nitrate solution at pH 5.0–6.0 (hexamine), using xylenol orange as indicator. An excess of 2,2′-bipyridyl is then added, the mixture shaken well and the EDTA released from the Zn-EDTA complex is titrated with standard lead nitrate solution. Results are obtained for 3–39 mg of Zn with relative errors ≤ 0.5% and standard deviations ± 0.06 mg. The interference of various ions are studied. The method is applied for the determination of zinc in its alloys and ores. Received October 27, 1998. Revision June 10, 1999.  相似文献   

4.
 A new method for the complexometric determination of Bi in the presence of co-ions using 2-mercaptoethanol as selective masking agent has been proposed. Bismuth along with other ions in a given sample solution are initially complexed with excess of EDTA. The pH of the solution is adjusted to 5.0–6.0 using solid hexamine (10 ± 2 g) and the remaining uncomplexed EDTA is titrated with lead-nitrate solution using xylenol orange indicator. A known excess of 2-mercaptoethanol solution (5% alcoholic) is then added, the mixture is shaken well and the released EDTA from the Bi(III)-EDTA complex is titrated against standard lead-nitrate solution. The method is applied to the determination of bismuth in Wood’s alloy. Reproducible and accurate results are obtained for 2–40 mg of bismuth with relative errors ≤ 0.5% and standard deviations ≤ 0.04 mg. Received January 15, 1999. Revision March 29, 1999.  相似文献   

5.
A complexo-titrimetric method for the determination of mercury(II) in the presence of other metal ions is described, based on the selective masking ability of sulphite ion towards Hg(II). Mercury in a given sample solution is initially complexed with a known excess of EDTA and the surplus EDTA titrated with zinc sulphate solution at pH 5.0–6.0 (hexamine), using xylenol orange (or methylthymol blue) as indicator. An excess of solid sodium sulphite is then added to decompose the Hg(II)-EDTA complex and the released EDTA is titrated with standard zinc sulphate solution. Reproducible and accurate results are obtained for 9.9–99 mg Hg with relative errors < 0.35% and standard deviations < 0.05 mg. The effects of various cations and anions are studied.  相似文献   

6.
A complexo-titrimetric method for the determination of copper(II) in the presence of other metal ions is described, based on the selective masking ability of 2-mercaptoethanol towards copper(II). Copper and other ions in a given sample solution are initially complexed with an excess of EDTA and the surplus EDTA is titrated with zinc sulfate solution at pH 5.0–6.0 (hexamine), using xylenol orange as indicator. A known excess of 2-mercaptoethanol solution (10%) is then added, the mixture is shaken well and the released EDTA from the Cu-EDTA complex is titrated against standard zinc sulfate solution. The interferences of various ions are studied and the method is applied to the determination of copper in its ores, alloys and complexes. Reproducible and accurate results are obtained for 2.5–40 mg of Cu with relative errors 0.4% and standard deviations 0.04 mg.  相似文献   

7.
An indirect complexo-titrimetric method is described for the determination of palladium in the presence of other metal ions, L-histidine being used as the masking agent. Palladium(II) and other metal ions are initially complexed with an excess of EDTA and the surplus EDTA titrated with standard zinc sulfate solution at pH 4.5–5.5 using xylenol orange as indicator. An excess of 1 % L-histidine solution is then added, and the released EDTA is titrated with standard zinc sulfate solution. Accurate and reproducible results were obtained for 2–15 mg of Pd with relative errors 0.4% and standard deviations < 0.02mg. Sn(IV) and Au(III) interfere, but can be easily masked. The method is successfully applied for the determination of palladium(II) in alloy compositions.  相似文献   

8.
A complexo-titrimetric method for the determination of mercury(II) in the presence of other metal ions is described based on the selective masking ability of sodium nitrite. Mercury and other ions are initially complexed with an excess of EDTA and the surplus EDTA is titrated with Pb(NO3)2 solution at pH 5.0–6.0 using xylenol orange as indicator. An excess of solid NaNO2 is then added to decompose the Hg(II)-EDTA complex and the released EDTA is titrated with standard Pb(NO3)2 solution. Accurate results were obtained for 10–65 mg of mercury with relative errors <0.3% and standard deviations < 0.03 mg. Sn(IV) and Pd(II) interfere but can be easily masked. The method is applied for the determination of Hg(II) in its alloy compositions and complexes.  相似文献   

9.

Background  

A complexometric method based on selective masking and de-masking has been developed for the rapid determination of aluminium, lead and zinc from the same solution in glass and glass frit samples. The determination is carried out using potassium cyanide to mask zinc, and excess disodium salt of EDTA to mask lead and aluminium. The excess EDTA was titrated with standard Mn(II)SO4 solution using Erichrome Black-T as the indicator. Subsequently selective de-masking agents – triethanolamine, 2,3-dimercaptopropanol and a formaldehyde/acetone mixture – were used to determine quantities of aluminium, lead and zinc in a stepwise and selective manner.  相似文献   

10.
A selective complexometric method is described for the determination of palladium, sodium nitrite being used as masking reagent. Palladium(II) in a given sample solution is initially cornplexed with an excess of EDTA and the surplus EDTA is titrated with zinc sulfate solution at pH 4.5–5.5 (acetic acid-sodium acetate buffer), using xylenol orange as indicator. An excess of sodium nitrite is then added, the mixture is shaken well and the EDTA released from the Pd-EDTA complex is titrated with a standard zinc sulfate solution. Results are obtained for 2.5–27.5 mg of Pd with relative errors 0.5% and standard deviations 0.05 mg. The interferences of various ions are studied. The method is applied for the determination of palladium(II) in alloys and complexes.  相似文献   

11.
A simple and accurate complexometric method is proposed for the determination of Tl(III) using semicarbazide hydrochloride as a releasing agent. In the presence of diverse metal ions, thallium is complexed first with a known excess of EDTA, and the surplus EDTA is then titrated with standard zinc sulfate at pH 5.0–6.0 (hexamine) using xylenol orange indicator. An excess of 5% aqueous neutral solution of semicarbazide hydrochloride is then added and the released EDTA is titrated against standard zinc sulfate solution. The method works well in the range 2–50 mg of Tl(III) with relative errors < 0.5%, standard deviations 0.05mg and coefficient of variation 0.4%. The method is applied for the determination of thallium content in complexes and alloy compositions  相似文献   

12.
A simple and accurate method has been developed for selective determination of mercury in alkaline solution. It involves the addition of an excess of EDTA to the mercury solution, titration of unreacted EDTA with a standard zinc solution, and then addition of N-allylthiourea solution at pH ? 9. By heating, the mercury-EDTA chelate is decomposed selectively, mercury sulfide is precipitated, and the EDTA freed is again titrated with standard zinc solution. Eriochrome Black T is used as indicator. Interference of some cations is discussed.  相似文献   

13.
A simple, rapid and selective complexometric method is proposed for the determination of mercury(II). Mercury(II) and other related metal ions are first complexed with an excess of EDTA and the surplus EDTA is back-titrated with a standard lead nitrate solution at pH 5.0–6.0 (hexamine buffer) using xylenol orange as an indicator. A 0.2% solution of 2-thiazolinethiol in acetone is then added to displace EDTA from the Hg(II)-EDTA complex. The released EDTA is titrated with a standard lead nitrate solution as before. Reproducible and accurate results are obtained in the range of 0.8 g l?1?15.8 g l?1 of mercury with a relative error less than ±0.25% and a coefficient of variation (n = 6) not higher than 0.28%. The interference of various ions was studied and the method was employed for the analysis of mercury in its synthetic alloy mixtures and in complexes.  相似文献   

14.
A simple, rapid, accurate, and selective complexometric method is proposed for the determination of palladium(II). Palladium(II), with associated diverse metal ions, is first complexed by adding a known excess of EDTA, and the uncomplexed EDTA is back titrated with lead nitrate solution in acetic acid-sodium acetate buffer (pH 5.0–6.0) until the end-point. Thiosemicarbazide (1%) solution in water is added to displace EDTA from the Pd-EDTA complex. The released EDTA is then titrated with the lead nitrate solution. Reproducible and accurate results are obtained in the concentration range of 1–10 mg of palladium with a relative error of less than 0.4% and a standard deviation of less than 0.02. The interference of many commonly associated metal ions was also studied. Advantages of this method over other complexometric methods of palladium determination are high-lighted.  相似文献   

15.
A new polymeric resin with sulfonamide pendant functions has been prepared for the selective extraction of mercuric ions. This polystyrene sulfonamide urea resin with a 3.5 mmol/g total nitrogen content is able to selectively sorb mercury from aqueous solutions. The mercury sorption capacity of the resin is around 1.60 mmol/g under non-buffered conditions. The experiments performed under identical conditions with some metal ions reveal that Cd(II), Pb(II), Zn(II), and Fe(III) ions are also extractable in low quantity (0.05–0.1 mmol/g). The sorbed mercury can be eluted by repeated treatment with hot acetic acid without hydrolysis of the amide groups.  相似文献   

16.
Summary. A new polymeric resin with sulfonamide pendant functions has been prepared for the selective extraction of mercuric ions. This polystyrene sulfonamide urea resin with a 3.5 mmol/g total nitrogen content is able to selectively sorb mercury from aqueous solutions. The mercury sorption capacity of the resin is around 1.60 mmol/g under non-buffered conditions. The experiments performed under identical conditions with some metal ions reveal that Cd(II), Pb(II), Zn(II), and Fe(III) ions are also extractable in low quantity (0.05–0.1 mmol/g). The sorbed mercury can be eluted by repeated treatment with hot acetic acid without hydrolysis of the amide groups.  相似文献   

17.
A complexometric method for the determination of cadmium(II) in presence of other metal ions is described based on the selective masking ability of 2-mercaptoethanol towards cadmium(II). Cadmium and other ions in a given sample solution are initially complexed with excess of EDTA and the surplus EDTA is titrated with lead nitrate solution at pH 5.0–6.0 (hexamethylentetramine), using xylenol orange as indicator. A known excess of 2-mercaptoethanol solution (10% alcoholic) is then added, the mixture is shaken well and the released EDTA from the Cd-EDTA complex is titrated against standard lead nitrate solution. The interferences of various ions are studied and the method is applied to the determination of cadmium in its complexes. Reproducible and accurate results are obtained for 3.5–25mg of Cd with relative errors 0.65% and standard deviations 0.06 mg.  相似文献   

18.
Adsorption behavior of zinc, cadmium and mercury ions on hydrous titanium oxide in aqueous solution has been studied as a function of concentration of the metal ion (10−2−10−7M), temperature (303–333 K) and pH 3–10 by applying radiotracer technique. The kinetics of adsorption follows the first order rate law and agrees well with the classical Freundlich isotherm. The removal was found to increase with increasing pH but was suppressed in the presence of EDTA. The overall process is endothermic and irreversible in nature. Part VII. Efficient removal of cadmium ions from aqueous solutions by hydrous manganese oxideS. P. Mishra, D. Tiwary, Radiochim. Acta, 80 (1998) 213.  相似文献   

19.
The sulfur content in metal sulfides can be determined after oxidative dissolution with bromine water-CCl4 at 50 °C by modified EDTA titration. The sulfides were quantitatively oxidized to SO4 2– without evolving H2S, and the metal cations were removed by cation exchange on an H-type column. Sulfate was precipitated as BaSO4, and the remaining Ba2+ was subsequently titrated with EDTA at pH = 10. The standard deviation for the determined sulfur in the metal sulfides, some of which can be hardly dissolved in usual mineral acid media, is about a few %. The method can be carried out with sample amounts containing as little as 1.5–2 mg sulfur. Received: 31 July 1997 / Revised: 5 January 1998 / Accepted: 9 January 1998  相似文献   

20.
The sulfur content in metal sulfides can be determined after oxidative dissolution with bromine water-CCl4 at 50 °C by modified EDTA titration. The sulfides were quantitatively oxidized to SO4 2– without evolving H2S, and the metal cations were removed by cation exchange on an H-type column. Sulfate was precipitated as BaSO4, and the remaining Ba2+ was subsequently titrated with EDTA at pH = 10. The standard deviation for the determined sulfur in the metal sulfides, some of which can be hardly dissolved in usual mineral acid media, is about a few %. The method can be carried out with sample amounts containing as little as 1.5–2 mg sulfur. Received: 31 July 1997 / Revised: 5 January 1998 / Accepted: 9 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号