首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
 A simple and rapid derivative spectrophotometric assay procedure is described for the analysis of caffeine (1), acetaminophen (2), and propyphenazone (3) in tablet formulations. The concentration range of application is 5.0–25.0 μg·cm−3 for 2 and 3 and 1.0–5.0 μg·cm−3 for 1. The method involves the extraction of the drugs from tablets with 0.1 N H2SO4, filtration, appropriate dilution, and measurement of the fourth derivative absorbance values at zero crossing wavelengths of 230.0, 263.2, and 256.6 nm for 1, 2, and 3. As a reference method, a reversed phase HPLC procedure was developed. Commercially available tablets were analyzed; statistical comparison of the results with those obtained from the reference method showed good agreement. The derivative spectrophotometric method has the advantage of being simple, rapid, inexpensive, and easy to perform.  相似文献   

2.
Summary.  A new selective, sensitive, and simple kinetic method is developed for the determination of trace amounts of iodide. The method is based on the catalytic effect of iodide on the reaction of triflupromazine (TFP) with H2O2. The reaction is followed spectrophotometrically by tracing the oxidation product at 498 nm within 1 min after addition of H2O2. The optimum reaction conditions are TFP (0.4 × 10−3 M), H2SO4 (1.0M), H3PO4 (2.0M), and H2O2 (1.6M) at 30°C. Following this procedure, iodide can be determined with a linear calibration graph up to 4.5 ng ċ cm−3 and a detection limit of 0.04 ng ċ cm−3, based on the 3 Sb criterion. The method can also be applied to the determination of iodate and periodate ions. Determination of as little as 0.2, 1.0, 2.0, and 4.0 ng ċ cm−3 of I, IO3 -, or IO4 - in aqueous solutions gave an average recovery of 98% with relative standard deviations below 1.6% (n = 5). The method was applied to the determination of iodide in Nile river water and ground waters as well as in various food samples after alkaline ashing treatment. The method is compared with other catalytic spectrophotometric procedures for iodide determination. Received January 19, 2001. Accepted (revised) March 12, 2001  相似文献   

3.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

4.
Summary.  A new simple, rapid, sensitive, and selective method is proposed for the microdetermination of mercury. Mercury(II) forms insoluble complexes with 2,3-dichloro-6-(2-hydroxy-3,5-dinitrophenylazo)-quinoxaline (1), 2,3-dichloro-6-(5-amino-3-carboxy-2-hydroxy-phenylazo)-quinoxaline (2), 2,3-dichloro-6-(2,7-dihydroxynaphth-1-ylazo)-quinoxaline (3), and 2,3-dichloro-6-(3-carboxy-2-hydroxy-naphth-1-ylazo)-quinoxaline (4) in aqueous acidic medium; the complexes can be made soluble by the action of an anionic surfactant. The solution of the pink coloured compounds is stable for at least 24 h. Beer’s law is obeyed over the concentration range from 0.1 to 2.8 μg · cm−3 of mercury. For a more accurate analysis, Ringbom optimum concentration ranges were found to be 0.25–2.5 μg · cm−3. The molar absorpitivity, Sandell sensitivity, and relative standard deviations were also calculated. A slight interference from Pd2+ and Cd2+ is exhibited by the first three ligands, whereas the last one is only negligibly affected by these metal ions. Strong interference from Ag(I) is evident for all ligands, whereas alkali, alkaline earth, and other transition metals tested posed negligible interference. 15 μg · cm−3 of Cd2+ and Pd2+ or 10 μg · cm−3 of Ag+ can be tolerated if 1.0 mg of potassium bromide and 2.0 mg of citrate as masking agents are added for the determination of 1.5 μg · cm−3 of mercury(II). The method was applied to the determination of methyl- and ethylmercury chloride and the analysis of environmental water samples. Received August 7, 2000. Accepted (revised) October 18, 2000  相似文献   

5.
The polarographic behavior of thiamethoxam (a neonicotinoid insecticide) was studied by direct current and differential pulse polarography. Depending on the pH thiamethoxam exhibited one or two well-defined cathodic polarographic waves. The characteristics of the electrode reaction were investigated and it was found that at pH > 5.0 the target molecule captures four electrons in the first step, and two in the second. Based on the reduction behavior of the target molecule on the mercury electrode, a differential pulse polarographic method was elaborated for the rapid determination of thiamethoxam at pH 8.0. With the optimized method, a linear response for thiamethoxam was found in the concentration range of 31.1 − 470 ng cm−3, the relative standard deviation did not exceed 1.6%, and the detection and quantitation limits were found to be 9.3 ng cm−3 and 31.1 ng cm−3, respectively. The method was applied to the determination of thiamethoxam in commercial formulations and real samples (potato and maize). The procedure is simple, fast, sensitive, and compares well with comparative spectrophotometric and chromatographic (HPLC/DAD) methods.  相似文献   

6.
A sensitive adsorptive anodic stripping procedure for the determination of trace zirconium at a carbon paste electrode (CPE) has been developed. The method is based on adsorptive accumulation of the Zr(IV)-alizarin red S(ARS) complex onto the surface of the CPE, followed by oxidation of adsorbed species. The optimal experimental conditions include the use of 0.10 mol · L−1 ammonium acetate buffer (pH 4.3), ARS, an accumulation potential of 0.20 V (versus SCE), an accumulation time of 2 min, a scan rate of 200 mV · s−1 and a second-order derivative linear scan mode. The oxidation peak for the complex appears at 0.69 V. The peak current is proportional to the concentration of Zr(IV) over the range of 1.0 × 10−9–2.0 × 10−7 mol · L−1, and the detection limit is 3 × 10−10 mol · L−1 for a 2 min adsorption time. The relative standard deviations (n = 8) for 5.0 × 10−8 and 5.0 × 10−9 mol · L−1 Zr(IV) are 3.3 and 4.8%, respectively. The proposed method was applied to the determination of zirconium in ore samples with satisfactory results.  相似文献   

7.
Summary.  A highly selective, sensitive, and simple catalytic method for the determination of molybdenum in natural and waste waters was developed. It is based on the catalytic effect of Mo(VI) on the oxidation of 2-aminophenol with H2O2. The reaction is monitored spectrophotometrically by tracing the oxidation product at 430 nm after 10 min of mixing the reagents. Addition of 800 μg · cm−3 EDTA conferred high selectivity; however, interfering effects of Au(III), Cr(III), Cr(VI), and Fe(III) had to be eliminated by a reduction and co-precipitation procedure with SnCl2 and Al(OH)3. Mo(VI) shows a linear calibration graph up to 11.0 ng · cm−3; the detection limit, based on the 3S b-criterion, is 0.10 ng · cm−3. The unique selectivity and sensitivity of the new method allowed its direct application to the determination of Mo(VI) in natural and waste waters. Received April 11, 2001. Accepted (revised) June 18, 2001  相似文献   

8.
 The second derivative spectrophotometric method has been developed as a procedure for the determination of neodymium, holmium and erbium in mixed rare earths. It was found that the 1-ethyl-6, 8-difluoro-7-(3-methyl-1-piperazinyl)-4-oxo-1,4- dihydro-3-quinoline carboxylic acid forms stable complexes with neodymium, holmium and erbium ions in the pH 9.2–10.5 range. In the second derivative spectra the optimum analytical signals for neodymium, holmium and erbium are at 576.2 (+)−574.5 (−)nm, 444.2 (+) −447.8 (−)nm and 516.0 (+) −517.2(−)nm, respectively. Beer’s law is obeyed from 5.0×10−5 M to 2.5×10−4 M of neodymium, holmium and erbium. The quantification limits (10 Sb) were 1.2×10−5 M for Nd, 9.7×10−5 M for Ho and 3.0×10−6 M for Er. Received April 22, 1998. Revision March 8, 1999.  相似文献   

9.
Summary.  Anhydrous 1,6-hexanediammonium dihydrogendecavanadate ((HdaH2)2H2V10O28, 1) was prepared by reaction of V2O5 with 1,6-hexanediamine in aqueous solution. The crystal structure of 1 was determined, and the proton positions in the H2V10O28 4− anion were calculated by the bond length/bond number method. The protons are bound to the centrosymmetrically oriented μ–OV3 groups of the decavanadate anion. Based on the analysis of IR spectra of 1 prepared from H2O and D2O, the absorption band at 871 cm−1 can be attributed to δ(V–Ob–H) vibrations. Received August 3, 2001. Accepted (revised) October 8, 2001  相似文献   

10.
The development of a spectrophotometric method for the determination of hydrogen peroxide in uranyl nitrate solutions is reported. The method involves the measurement of the absorbance at 520 nm of a vanadyl peroxide species. This species was formed by the addition of a reagent consisting of vanadium (V) (50 mmol·dm−3) in dilute sulphuric acid (2 mol·dm−3 H2SO4). This reagent, after dilution, was also used as an extractant for organic phase samples. The method is simple and robust and tolerant of nitric acid and U(VI). Specificity and accuracy were improved by the application of solid phase extraction techniques to remove entrained organic solvents and Pu(IV). Reverse phase solid phase extraction was used to clean-up aqueous samples or extracts which were contaminated with entrained solvent. A solid phase extraction system based upon an extraction chromatography system was used to remove Pu(IV). Detection limits of 26 μmol·dm−3 (0.88 μg·cm−3) or 7 μmol·dm−3 (0.24 μg·cm−3) for, respectively, a 1 and 4 cm path length cell were obtained. Precisions of RSD=1.4% and 19.5% were obtained at the extremes of the calibration curve (5 mmol·dm−3 and 50 μmol·dm−3 H2O2, 1 cm cell). The introduction of the extraction and clean-up stages had a negligible effect upon the precision of the determination. The stability of an organic phase sample was tested and no loss of analyte could be discerned over a period of at least 5 days. The presence of trace levels of reductants interfered with the determination, e.g., hydrazine (<2 mmol·dm−3), but this effect was ameliorated by increasing the concentration of the colormetric reagent.  相似文献   

11.
 Squaric acid (1,2-dihydroxy-3,4-diketo-cyclobutene) is used in a specific reaction with Fe(III) for the spectrophotometric determination of Fe(III) and total iron content. The optimization of the experimental parameters leads to the establishment of a simple, fast and accurate analytical method. The analytical procedure includes mixing ammonium squarate (40 mM), prepared in a phthalate buffer solution of pH 2.7, with the sample and measuring the absorbance at 515 nm. The molar absorptivity of the colored product is 3.95×103 L·mol−1·cm−1, at 515 nm. Calibration graphs for Fe(III) are rectilinear for 0.5–20 mgL−1, with a detection limit of 0.3 mgL−1 and r.s.d. not exceeding 2.5%, for five replicates of a 3.0 mgL−1 standard solution. The method has been successfully applied to the determination of iron (III) and the total iron content after quantitative oxidation of iron (II). The results for several analyzed samples when compared with those acquired by using the FAAS technique, were found to be in satisfactory agreement. Author for correspondence: University of Ioannina, Department of Chemistry, Laboratory of Analytical Chemistry, Ioannina 451 10, Greece. E-mail: panavelt@cc.uoi.gr Received July 27, 2002; accepted December 20, 2002 Published online April 11, 2003  相似文献   

12.
Summary.  Ab initio calculations at the HF/6-31G* level of theory for geometry optimization and the MP2/6-31G*//HF/6-31G* level for a single point total energy calculation are reported for (Z,Z)-, (E,Z)-, and (E,E)-cycloocta-1,4-dienes. The C 2-symmetric twist-boat conformation of (Z,Z)-cycloocta-1,4-diene was calculated to be by 3.6 kJ·mol−1 more stable than the C S-symmetric boat-chair form; the calculated energy barrier for ring inversion of the twist-boat conformation via the C S-symmetric boat-boat geometry is 19.1 kJ·mol−1. Interconversion between twist-boat and boat-chair conformations takes place via a half-chair (C 1) transition state which is 43.5 kJ·mol−1 above the twist-boat form. The unsymmetrical twist-boat-chair conformation of (E,Z)-cycloocta-1,4-diene was calculated to be by 18.7 kJ·mol−1 more stable than the unsymmetrical boat-chair form. The calculated energy barrier for the interconversion of twist-boat-chair and boat-chair is 69.5 kJ·mol−1, whereas the barrier for swiveling of the trans-double bond through the bridge is 172.6 kJ·mol−1. The C S symmetric crown conformation of the parallel family of (E,E)-cycloocta-1,4-diene was calculated to be by 16.5 kJ·mol−1 more stable than the C S-symmetric boat-chair form. Interconversion of crown and boat-chair takes place via a chair (C S) transition state which is 37.2 kJ·mol−1 above the crown conformation. The axial- symmetrical twist geometry of the crossed family of (E,E)-cycloocta-1,4-diene is 5.9 kJ·mol−1 less stable than the crown conformation. Corresponding author. E-mail: isayavar@yahoo.com Received March 25, 2002; accepted April 3, 2002  相似文献   

13.
 A new selective, sensitive, and simple kinetic method is developed for the determination of trace amounts of iodide. The method is based on the catalytic effect of iodide on the reaction of triflupromazine (TFP) with H2O2. The reaction is followed spectrophotometrically by tracing the oxidation product at 498 nm within 1 min after addition of H2O2. The optimum reaction conditions are TFP (0.4 × 10−3 M), H2SO4 (1.0M), H3PO4 (2.0M), and H2O2 (1.6M) at 30°C. Following this procedure, iodide can be determined with a linear calibration graph up to 4.5 ng ċ cm−3 and a detection limit of 0.04 ng ċ cm−3, based on the 3 Sb criterion. The method can also be applied to the determination of iodate and periodate ions. Determination of as little as 0.2, 1.0, 2.0, and 4.0 ng ċ cm−3 of I, IO3 -, or IO4 - in aqueous solutions gave an average recovery of 98% with relative standard deviations below 1.6% (n = 5). The method was applied to the determination of iodide in Nile river water and ground waters as well as in various food samples after alkaline ashing treatment. The method is compared with other catalytic spectrophotometric procedures for iodide determination.  相似文献   

14.
Summary.  In the present work, rutin (3,3′ ,4′ ,5,7-pentahydrohyflavone-3-rhamnoglucoside) was determinated via a complexing reaction with a titanyloxalate anion. K2[TiO(C2O4)2] and rutin react in 50% ethanol forming a 1:2 complex in a pH range from 4.00 to 11.50, in which the TiO(C2O4)2 2− ion is linked to rutin through the 4-carbonyl and 5-hydroxyl group. The thermodynamic stability constant log β2 0 of the complex is determined to 10.80 at pH = 6.50. The change of the standard Gibbs free energy Δ G0 amounts to −61 kJċ mol−1, indicating that the process of complex formation is spontaneous. The optimal conditions for the spectrophotometric determination of microconcentrations of rutin are at pH=6.40 and λ= 430 nm, where the complex shows an absorption maximum with a molar absorption coefficient a 430=(60±2)ċ103 dm3ċ mol−1ċ cm−1. The method is applied rutin determination from tablets. Received January 4, 2000. Accepted (revised) February 17, 2000  相似文献   

15.
The electrochemical behavior of the ofloxacin–copper complex, Cu(II)L2, at a mercury electrode, and the interaction of DNA with the complex have been investigated. The experiments indicate that the electrode reaction of Cu(II)L2 is an irreversible surface electrochemical reaction and that the reactant is of adsorbed character. In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2-DNA, results in the decrease of the peak current of Cu(II)L2. Based on the electrochemical behavior of the Cu(II)L2 with DNA, binding by electrostatic interaction is suggested and a new method for determining nucleic acid is proposed. Under the optimum conditions, the decrease of the peak current is in proportional to the concentration of nucleic acids in the range from 3 × 10−8 to 3 × 10−6 g · mL−1 for calf thymus DNA, from 1.6 × 10−8 to 9.0 × 10−7 g · mL−1 for fish sperm DNA, and from 3.3 × 10−8 to 5.5 × 10−7 g · mL−1 for yeast RNA. The detection limits are 3.3 × 10−9, 6.7 × 10−9 and 8.0 × 10−9 g · mL−1, respectively. The method exhibits good recovery and high sensitivity in synthetic samples and in real samples.  相似文献   

16.
Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.  相似文献   

17.
Vesuvianite, a complex sorosilicate, often contains variable (from trace-to-minor-element) amounts of H, B and F. We describe a microanalytical study of H, B and F in vesuvianite by means of Electron Probe Microanalysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), and single-crystal Fourier-Transform InfraRed (FTIR) spectroscopy. Most crystals investigated are B- (up to 3.67 wt% B2O3) and F-rich (up to 2.38 wt%); H2O ranges from 0.243 to 0.665 wt%. The H data obtained by SIMS allowed us to calibrate the quantitative analysis of H2O by FTIR spectroscopy. The resulting molar absorption coefficient (ɛ i = 100 000 ± 2000 L · mol−1 · cm−2) is in excellent agreement with working curves available from the literature. Moreover, the SIMS data allowed us to obtain the calibration curve to estimate the B2O3 content on the basis on the FTIR absorbance: a i = 34000 ± 1400 · B2O3 (wt%).  相似文献   

18.
Summary.  The van der Pauw method has been applied to conductivity relaxation experiments on YBa2Cu3O6+δ at 600°C in order to determine the chemical diffusion coefficient as a function of the oxygen partial pressure in the surrounding atmosphere (100 > p O 2/bar > 10−3). It is shown that the van der Pauw technique is suitable for monitoring the conductivity relaxation when the oxygen diffusion is perpendicular to the direct current flowing through the sample in accordance with the van der Pauw geometry using thin tablets as samples. The oxygen partial pressure is changed stepwise (generally Δlogp O 2 ≤ 0.5) by employing appropriate gas mixtures as well as an electrochemical oxygen pump device. An evaluation formula is given for the determination of the chemical diffusion coefficient neglecting slow surface processes. In addition, the electronic conductivity of YBa2Cu3O6+δ has been measured at 600°C as a function of oxygen partial pressure of the ambient atmosphere (100 > p O 2/bar > 10−5) by means of the van der Pauw method applying the same experimental set-up. Typical values of the chemical diffusion coefficient are in the range of 10−6 cm2·s−1; the results of the conductivity measurements are interpreted in terms of an appropriate defect model. Received May 30, 2000. Accepted June 8, 2000  相似文献   

19.
The yields of hydrogen atoms, oxygen atoms and molecules, and hydroxyl radicals after a microwave discharge in the mixture of CO2 and H2 were measured by ESR spectroscopy in a flow-type system. A mathematical model of the kinetics of chemical reactions downstream the microwave discharge was devised. The concentrations of particles that cannot be detected under our experimental conditions were estimated. Experimental values of the concentration sensitivity for an RE-1306 ESR spectrometer are as follows: for a pressure of 1 Torr and optimized detection conditions, H., 1011 cm−3; O., 3·1010 cm−3; OH., 1010 cm−3; O2, 3·1013 cm−3 (Ref. 7); for a pressure of 2 Torr, H., 5·1012 cm−3; O., 2·1012 cm−3; OH., 2.5·1011 cm−3; O2, 7.5·1014 cm−3 8 Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 4, pp. 665–669, April, 2000.  相似文献   

20.
 In the present work, rutin (3,3′ ,4′ ,5,7-pentahydrohyflavone-3-rhamnoglucoside) was determinated via a complexing reaction with a titanyloxalate anion. K2[TiO(C2O4)2] and rutin react in 50% ethanol forming a 1:2 complex in a pH range from 4.00 to 11.50, in which the TiO(C2O4)2 2− ion is linked to rutin through the 4-carbonyl and 5-hydroxyl group. The thermodynamic stability constant log β2 0 of the complex is determined to 10.80 at pH = 6.50. The change of the standard Gibbs free energy Δ G0 amounts to −61 kJċ mol−1, indicating that the process of complex formation is spontaneous. The optimal conditions for the spectrophotometric determination of microconcentrations of rutin are at pH=6.40 and λ= 430 nm, where the complex shows an absorption maximum with a molar absorption coefficient a 430=(60±2)ċ103 dm3ċ mol−1ċ cm−1. The method is applied rutin determination from tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号