首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel water-soluble ruthenium(II) complexes [RuCl(2)(eta(6)-arene)[P(CH(2)OH)(3)]]2a-c and [RuCl(eta(6)-arene)[P(CH(2)OH)(3)](2)][Cl]3a-c have been prepared in high yields by reaction of dimers [[Ru(eta(6)-arene)(micro-Cl)Cl](2)](arene = C(6)H(6)1a, p-cymene 1b, C(6)Me(6)1c) with two or four equivalents of P(CH(2)OH)(3), respectively. Complexes 2/3a-c are active catalysts in the redox isomerization of several allylic alcohols into the corresponding saturated carbonyl compounds under water/n-heptane biphasic conditions. Among them, the neutral derivatives [RuCl(2)(eta(6)-C(6)H(6))[P(CH(2)OH)(3)]]2a and [RuCl(2)(eta(6)-p-cymene)[P(CH(2)OH)(3)]]2b show the highest activities (TOF values up to 600 h(-1); TON values up to 782). Complexes 2/3a-c also catalyze the hydration of terminal alkynes.  相似文献   

2.
Reactions of [(eta(6)-arene)RuCl(2)](2) 1 (arene = p-cymene (a), 1,2,3,4-Me(4)C(6)H(2) (b), 1,2,3-Me(3)C(6)H(2) (c)) with tris(2,6-dimethoxyphenyl)phosphine (TDMPP) led to loss of two molecules of CH(3)Cl to give (eta(6)-arene)Ru[{2-O-C(6)H(3)-6-OMe}(2){C(6)H(3)(OMe)(2)-2,6}], 2a-c, which contains a trihapto ligand (eta(3)-P,O,O) derived from TDMPP, whereas the 1,3,5-Me(3)C(6)H(3) (1d), 1,2,3,5-Me(4)C(6)H(2) (1e), and C(6)Me(6) (1f) complexes did not react with TDMPP. The structures of 2a and 2b were confirmed by X-ray analyses: for 2a, a = 11.691(2) ?, b = 15.228(2) ?, c = 10.320(1) ?, alpha = 95.93(1) degrees, beta = 113.783(9) degrees, gamma = 83.86(1) degrees, triclinic, P&onemacr;, Z = 2, R = 0.051; for 2b, a = 17.79(2) ?, b = 15.43(1) ?, c = 20.93(1) ?, beta = 91.25(8) degrees, monoclinic, P2(1)/n, Z = 8, R = 0.056. Bis(2,6-dimethoxyphenyl)phenylphosphine (BDMPP) reacted with 1a, 1b, and 1d at room temperature to give (eta(6)-arene)RuCl[PPh(2-O-C(6)H(3)-6-OMe){C(6)H(3)(OMe)(2)-2,6}], 3a,b,d, which contains a dihapto (eta(2)-P,O) ligand derived from BDMPP by an X-ray analysis of 3a: a = 12.33(1) ?, b = 14.246(8) ?, c = 11.236(9) ?, alpha = 91.47(8) degrees, beta = 117.28(6) degrees, gamma = 111.70(6) degrees, triclinic, P&onemacr;, Z = 2, R = 0.040. A similar reaction with 1f recovered the starting materials, but that in refluxing MeCN produced [(eta(6)-C(6)Me(6))Ru[PPh(2-O-C(6)H(3)-6-OMe}(2)], 4f, containing a trihapto (eta(3)-P,O,O) ligand derived from BDMPP. Complex 1d reacted with BDMPP at reflux in MeCN/CH(2)Cl(2) and resulted in a loss of an arene ring to give a five-coordinate complex, Ru[eta(2)-P,O-PPh(2-O-C(6)H(3)-6-OMe){C(6)H(3)(OMe)(2)-2,6}](2)(MeCN), 5. Treatment of (2,6-dimethoxyphenyl)diphenylphosphine (MDMPP) with 1f gave (eta(6)-C(6)Me(6))RuCl[eta(2)-P,O-PPh(2)(2-O-C(6)H(3)-6-OMe)],6f, and that with 1b gave (eta(6)-1,2,3,4-Me(4)C(6)H(2))RuCl[eta(2)-P,O-PPh(2)(2-O-C(6)H(3)-6-OMe}], 6b, and (eta(6)-1,2,3,4-Me(4)C(6)H(2))RuCl(2)[eta(1)-P-PPh(2){C(6)H(3)(OMe)(2)-2,6}],7b. The phosphine ligand of 6b acted as a bidentate ligand derived from MDMPP: a = 8.074(4) ?, b = 16.816(3) ?, c = 18.916(4) ?, beta = 94.05(3) degrees, monoclinic, P2(1)/n, Z = 4, R = 0.051. Transformation of 7b to 6b readily occurred accompanying an elimination of MeCl. Reaction of 1a with MDMPP eliminated an arene ring to give the octahedral compound RuCl(2)[eta(2)-P,OMe-PPh(2){C(6)H(3)(MeO)(2)-2,6}](2), 8. An X-ray analysis of 8 showed that two MDMPP ligands were in a cis-position: a = 10.596(14) ?, b = 27.586(12) ?, c = 13.036(8) ?, beta = 108.17(7) degrees, monoclinic, P2(1)/n, Z = 4, R = 0.035.  相似文献   

3.
Coordination of N,N' bidentate ligands aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N 1 (Ar = 4-CH3-C6H4, 1a; 4-CH3O-C6H4, 1b; 2,6-(CH3)2-C6H3, 1c; 4-CF3-C6H4, 1d) to the moieties [Ru(bipy)2]2+, [Ru(eta5-C5H5)L]+ (L = CH3CN, CO), or [Ru(eta6-arene)Cl]2+ (arene = benzene, p-cymene) occurs under diastereoselective or diastereospecific conditions. Detailed stereochemical analysis of the new complexes is included. The coordination of these secondary amine ligands activates their oxidation to imines by molecular oxygen in a base-catalyzed reaction and hydrogen peroxide was detected as byproduct. The amine-to-imine oxidation was also observed under the experimental conditions of cyclic voltammetry measurements. Deprotonation of the coordinated amine ligands afforded isolatable amido complexes only for the ligand (1-methyl-1-pyridin-2-yl-ethyl)-p-tolyl-amine, 1e, which doesn't contain hydrogen atoms in a beta position relative to the N-H bond. The structures of [Ru(2,2'-bipyridine)2(1b)](PF6)2, 2b; [Ru(2,2'-bipyridine)(2)(1c)](PF6)2, 2c; trans-[RuCl2(COD)(1a)], 3; and [RuCl2(eta6-C6H6)(1a)]PF6, 4a, have been confirmed by X-ray diffraction studies.  相似文献   

4.
The allenylidene-ruthenium complexes [(eta6-arene)RuCl(=C=C=CR2)(PR'3)]OTf (R2 = Ph; fluorene, Ph, Me; PR'3 = PCy3, P(i)Pr3, PPh3) (OTf = CF3SO3) on protonation with HOTf at -40 C are completely transformed into alkenylcarbyne complexes [(eta6-p-cymene)RuCl([triple bond]CCH=CR2)(PR3)](OTf)2. At -20 degrees C the latter undergo intramolecular rearrangement of the allenylidene ligand, with release of HOTf, into the indenylidene group in derivatives [(eta6-arene)RuCl(indenylidene)(PR3)]OTf. The in situ-prepared indenylidene-ruthenium complexes are efficient catalyst precursors for ring-opening metathesis polymerization of cyclooctene and cyclopentene, reaching turnover frequencies of nearly 300 s(-1) at room temperature. Isolation of these derivatives improves catalytic activity for the ring-closing metathesis of a variety of dienes and enynes. A mechanism based on the initial release of arene ligand and the in situ generation of the active catalytic species RuCl(OTf)(=CH2)(PR3) is proposed.  相似文献   

5.
An open capsule-type octanuclear heterometallic sulfide cluster without an intramolecular inversion center [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)](2) (5) has been synthesized for the first time by stepwise connection of three mononuclear building blocks, i.e., (i) [RuCl(2)(eta(6)-C(6)Me(6)){P(OMe)(3)}] (1a) as an octahedral terminal building block to control the direction of cluster expansion, (ii) [MoOS(3)](2)(-) as a tetrahedral polydentate building block owing to the strong coordination ability of the S atoms, and (iii) a CuI building block to form a trigonal planar (mu-S)(2)CuI unit or to form a linkage unit of two incomplete cubane-type octanuclear frameworks. The stepwise connection was made in the following order: [RuCl(2)(eta(6)-C(6)Me(6)){P(OMe)(3)}] (1a, mononuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoOS(mu(2)-S)(2)}] (2a, dinuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(2)-S)(2)(mu(3)-S)}CuI] (3a, butterfly-type trinuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)](2) (5). When P(OMe)(3) was replaced by P(OEt)(3), which is more bulky than P(OMe)(3), in the starting ruthenium building block [RuCl(2)(eta(6)-C(6)Me(6)){P(OEt)(3)}] (1b, mononuclear), only the tetranuclear incomplete single cubane cluster [Ru(eta(6)-C(6)Me(6)){P(OEt)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)] (6) was generated, owing to the steric effect of P(OEt)(3).  相似文献   

6.
Three novel luminescent piano-stool arene ruthenium complexes of general formula [(eta(6)-arene)RuCl(2)(CPI)] (eta(6)-arene = benzene, 1, p-cymene, 2, and hexamethylbenzene, 3; CPI=1-(4-cyanophenyl)imidazole were prepared. The molecular structures of 2 and 3 were determined crystallographically. Reaction of 1-3 with EPh(3) (E = P, As, or Sb) and N-N donor bases such as 2,2'-bipyridine and 1,10-phenanthroline afforded cationic mononuclear complexes of general formula [(eta(6)-arene)RuCl(CPI)(EPh(3))](+) (eta(6)-arene = C(6)H(6), E = P (1a), E = As (1b), E = Sb(1c); eta(6)-arene = C(10)H(14), E = P (2a), E = As (2b), E = Sb (2c); eta(6)-arene = C(6)Me(6), E = P (3a), E = As (3b), E = Sb (3c)) and [(eta(6)-arene)Ru(N-N)(CPI)](2+) (eta(6)-arene = C(6)H(6), N-N = bipy (1d), N-N = phen (1e); eta(6)-arene = C(10)H(14), N-N = bipy (2d), N-N = phen (2e); eta(6)-arene = C(6)Me(6), N-N = bipy (3d), N-N = phen (3e)). Molecular structures of 1a and 2a were also confirmed by X-ray crystallography. Structural studies of the complexes 2, 3, 1a, and 2a supported coordination of CPI through the imidazole nitrogen and the presence of a pendant nitrile group. Structural data also revealed stabilization of crystal packing in the complexes 2, 3, and 2a by C-H...X (X = Cl, F) type inter- and intramolecular interactions and in complex 1a by pi-pi stacking. Moreover, neutral homonuclear bimetallic complexes 2f,g were prepared by using complex 2 as a metallo-ligand, where CPI acts as a bridge between two metal centers. Emission spectra of the mononuclear complexes [(eta(6)-arene)RuCl(2)(CPI)] and its derivatives exhibited intense luminescence when excited in the metal to ligand charge-transfer band.  相似文献   

7.
Reaction of the dimers [RuCl2(eta6-arene)]2 (arene = benzene, p-cymene, mesitylene) with salicyloxazolines in the presence of NaOMe gives complexes [RuCl(R-saloxaz)(arene)] (1-5) which have been fully characterised. Complexes [RuL(iPr-saloxaz)(mes)]Y (L = py, 2-Mepy, 4-Mepy; PPh3; Y- = SbF6 or BPh4) 6-9 were prepared by treating the chloride 2a with ligand L and NaY (Y- = SbF6 or BPh4) in methanol at reflux. Halide complexes [RuX(iPr-saloxaz)(mes)](X = Br, 10; X = I, 11) were synthesised by treating 2a with AgSbF6 then with 1.2 equivalents of KBr or NaI, the methyl complex [RuMe(iPr-saloxaz)(mes)] 12 was synthesised from 2a by reaction with MeLi. Five complexes, [RuCl(iPr-saloxaz)(mes)] 2a, [RuCl(tBu-saloxaz)(p-cymene)] 3b, [RuCl(Ph-saloxaz)(mes)] 5a, [Ru(4-Mepy)(iPr-saloxaz)(mes)][SbF6] 7, and [Ru(PPh3)(iPr-saloxaz)(mes)][SbF6] 9, have been characterised by X-ray crystallography. Treatment of complexes 1-5 with AgSbF6 gives cationic species which are enantioselective catalysts for the Diels-Alder reaction of acroleins with cyclopentadiene, the effect of substituents on enantioselectivity has been examined.  相似文献   

8.
The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.  相似文献   

9.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

10.
Reactions of the molybdates Na(2)MoO4.2 H2O and (nBu(4)N)2[Mo2O7] with [[Ru(arene)Cl(2)](2)] (arene=C(6)H5CH3, 1,3,5-C6H3(CH3)(3), 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [[Ru(eta(6)-arene)](4)Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [[Ru(eta(6)-1,4-CH3C6H4CH(CH3)2)](4)Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [[Ru(eta(6)-arene)](4)Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms.  相似文献   

11.
Water-soluble piano-stool arene ruthenium complexes based on 1-(4-cyanophenyl)imidazole (CPI) and 4-cyanopyridine (CNPy) with the formulas [(eta6-arene)RuCl2(L)] (L = CPI, eta6-arene = benzene (1), p-cymene (2), hexamethylbenzene (3); L = CNPy, eta6-arene = benzene (4), p-cymene (5), hexamethylbenzene (6)) have been prepared by our earlier methods. The molecular structure of [(eta6-C6Me6)RuCl2(CNPy)] (6) has been determined crystallographically. Analogous rhodium(III) complex [(eta5-C5Me5)RhCl2(CPI)] (7) has also been prepared and characterized. DNA interaction with the arene ruthenium complexes and the rhodium complex has been examined by spectroscopic and gel mobility shift assay; condensation of DNA and B-->Z transition have also been described. Arene ruthenium(II) and EPh3 (E = P, As)-containing arene ruthenium(II) complexes exhibited strong binding behavior, however, rhodium(III) complexes were found to be Topo II inhibitors with an inhibition percentage of 70% (7) and 30% (7a). Furthermore, arene ruthenium complexes containing polypyridyl ligands also act as mild Topo II inhibitors (10%, 3c and 40%, 3d) in contrast to their precursor complexes. Complexes 4-6 also show significant inhibition of beta-hematin/hemozoin formation activity.  相似文献   

12.
The reaction of Cp*RhCl2(PPh3) 1 with 1-alkyne and H2O in the presence of KPF6 afforded the alkenyl ketone complex [Cp*Rh(PPh3)(CPh=CHCOCH2R)](PF6) [R = p-tolyl (3a), R = Ph (3b)], whereas Cp*IrCl2(PPh3) 2 or [(eta 6-C6Me6)RuCl2(PPh3) gave the corresponding [Cp*IrCl(CO)(PPh3)](PF6) 5a and [(eta 6-C6Me6)RuCl(CO)(PPh3)](PF6).  相似文献   

13.
Arene ruthenium(II) complexes containing bis(pyrazolyl)methane ligands have been prepared by reacting the ligands L' (L' in general; specifically L(1) = H(2)C(pz)(2), L(2) = H(2)C(pz(Me2))(2), L(3) = H(2)C(pz(4Me))(2), L(4) = Me(2)C(pz)(2) and L(5) = Et(2)C(pz)(2) where pz = pyrazole) with [(arene)RuCl(mu-Cl)](2) dimers (arene = p-cymene or benzene). When the reaction was carried out in methanol solution, complexes of the type [(arene)Ru(L')Cl]Cl were obtained. When L(1), L(2), L(3), and L(5) ligands reacted with excess [(arene)RuCl(mu-Cl)](2), [(arene)Ru(L')Cl][(arene)RuCl(3)] species have been obtained, whereas by using the L(4) ligand under the same reaction conditions the unexpected [(p-cymene)Ru(pzH)(2)Cl]Cl complex was recovered. The reaction of 1 equiv of [(p-cymene)Ru(L')Cl]Cl and of [(p-cymene)Ru(pzH)(2)Cl]Cl with 1 equiv of AgX (X = O(3)SCF(3) or BF(4)) in methanol afforded the complexes [(p-cymene)Ru(L')Cl](O(3)SCF(3)) (L' = L(1) or L(2)) and [(p-cymene)Ru(pzH)(2)Cl]BF(4), respectively. [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) formed when [(p-cymene)Ru(L(1))Cl]Cl reacts with an excess of AgPF(6). The solid-state structures of the three complexes, [(p-cymene)Ru{H(2)C(pz)(2)}Cl]Cl, [(p-cymene)Ru{H(2)Cpz(4Me))(2)}Cl]Cl, and [(p-cymene)Ru{H(2)C(pz)(2)}Cl](O(3)SCF(3)), were determined by X-ray crystallographic studies. The interionic structure of [(p-cymene)Ru(L(1))Cl](O(3)SCF(3)) and [(p-cymene)Ru(L')Cl][(p-cymene)RuCl(3)] (L' = L(1) or L(2)) was investigated through an integrated experimental approach based on NOE and pulsed field gradient spin-echo (PGSE) NMR experiments in CD(2)Cl(2) as a function of the concentration. PGSE NMR measurements indicate the predominance of ion pairs in solution. NOE measurements suggest that (O(3)SCF(3))(-) approaches the cation orienting itself toward the CH(2) moiety of the L(1) (H(2)C(pz)(2)) ligand as found in the solid state. Selected Ru species have been preliminarily investigated as catalysts toward styrene oxidation by dihydrogen peroxide, [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) being the most active species.  相似文献   

14.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

15.
M(eta(6)-arene)(2) species (M = Cr, arene = 1,3,5-Me(3)C(6)H(3); M = Mo, arene = 1,3,5-Me(3)C(6)H(3), 1,3,5-(i)Pr(3)C(6)H(3)), have been prepared by a modified Fischer-Hafner synthesis or by metal vapour techniques. The reaction of Cr(eta(6)-1,3,5-Me(3)C(6)H(3))(2) with the fulvene derivatives pentacarbomethoxycyclopentadiene (pcmcpH), 1-benzoyl-6-hydroxy-6-phenylfulvene (dbcpH), or 1-benzoyl-3-nitro-6-hydroxy-6-phenylfulvene (dbncpH) proceeds with evolution of dihydrogen and formation of the ionic derivatives [Cr(eta(6)-1,3,5-Me(3)C(6)H(3))(2)][E], where E = pcmcp, dbcp, or dbncp. Mo(eta(6)-arene)(2) derivatives (arene = toluene, 1,3,5-Me(3)C(6)H(3), 1,3,5-(i)Pr(3)C(6)H(3)) are oxidized to [Mo(eta(6)-arene)(2)](+) by pcmcpH. The crystal and molecular structures of [M(eta(6)-1,3,5-R(3)C(6)H(3))(2)][pcmcp] (M = Cr, R = Me; M = Mo, R = Me, (i)Pr) have been solved by X-ray single crystal diffraction.  相似文献   

16.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

17.
Organometallic ruthenium(II) complexes of general formula [Ru(eta(6)-arene)Cl(2)(NC(5)H(4)OOC-C(5)H(4)FeC(5)H(5))], where arene = C(6)H(6) (1), C(6)H(5)Me (2), p-iPrC(6)H(4)Me (3), and C(6)Me(6) (4), and of general formula [Ru(eta(6)-arene)Cl(2)](2)(NC(5)H(4)OOC-C(5)H(4)FeC(5)H(4)-COOC(5)H(4)N), where arene = p-iPrC(6)H(4)Me (5) and C(6)Me(6) (6), have been synthesized and characterized, the molecular structures of these complexes being confirmed by single-crystal X-ray structure analysis of complex 4 as a representative example. The redox properties and in vitro anticancer activities of complexes 1-6 have been studied. All the compounds are moderately cytotoxic toward the A2780 and A2780cisR (cisplatin-resistant) human ovarian carcinoma cell lines. The diruthenium arene complexes 5 and 6 are about twice as active as their mononuclear analogues 3 and 4. Cyclic voltammetry revealed a good correlation of the RuII/RuIII redox potentials of 1-4 and the number of alkyl substituents in the arene ligand.  相似文献   

18.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

19.
Diuranium μ-η(6),η(6)-arene complexes supported by ketimide ligands were synthesized and characterized. Disodium or dipotassium salts of the formula M(2)(μ-η(6),η(6)-arene)[U(NC(t)BuMes)(3)](2) (M = Na or K, Mes = 2,4,6-C(6)H(2)Me(3)) and monopotassium salts of the formula K(μ-η(6),η(6)-arene)[U(NC(t)BuMes)(3)](2) (arene = naphthalene, biphenyl, trans-stilbene, or p-terphenyl) were both observed. Two different salts of the monoanionic, toluene-bridged complexes are also described. Density functional theory calculations have been employed to illuminate the electronic structure of the μ-η(6),η(6)-arene diuranium complexes and to facilitate the comparison with related transition-metal systems, in particular (μ-η(6),η(6)-C(6)H(6))[VCp](2). It was found that the μ-η(6),η(6)-arene diuranium complexes were isolobal with (μ-η(6),η(6)-C(6)H(6))[VCp](2) and that the principal arene-binding interaction was a pair of δ bonds (total of 4e) involving both metals and the arene lowest unoccupied molecular orbital. Reactivity studies have been carried out with the mono- and dianionic μ-η(6),η(6)-arene diuranium complexes, revealing contrasting modes of redox chemistry as a function of the system's state of charge.  相似文献   

20.
A modular approach for the synthesis of cage structures is described. Reactions of [(arene)RuCl(2)](2) [arene = p-cymene, 1,3,5-C(6)H(3)Me(3), 1,3,5-C(6)H(3)(i-Pr)(3)] with formyl-substituted 3-hydroxy-2-pyridone ligands provide trinuclear metallamacrocycles with pendant aldehyde groups. Subsequent condensation reactions with di- and triamines give molecular cages with 3, 6, or 12 Ru centers in a diastereoselective and chemoselective (self-sorting) fashion. Some of the cages can also be prepared in one-pot reactions by mixing [(arene)RuCl(2)](2) with the pyridone ligand and the amine in the presence of base. The cages were comprehensively analyzed by X-ray crystallography. The diameter of the largest dodecanuclear complex is ~3 nm; the cavity sizes range from 290 to 740 ?(3). An amine exchange process with ethylenediamine allows the clean conversion of a dodecanuclear cage into a hexanuclear cage without disruption of the metallamacrocyclic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号