首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
A comparative analysis of the properties of two optical biosensor platforms: (1) the propagating surface plasmon resonance (SPR) sensor based on a planar, thin film gold surface and (2) the localized surface plasmon resonance (LSPR) sensor based on surface confined Ag nanoparticles fabricated by nanosphere lithography (NSL) are presented. The binding of Concanavalin A (ConA) to mannose-functionalized self-assembled monolayers (SAMs) was chosen to highlight the similarities and differences between the responses of the real-time angle shift SPR and wavelength shift LSPR biosensors. During the association phase in the real-time binding studies, both SPR and LSPR sensors exhibited qualitatively similar signal vs time curves. However, in the dissociation phase, the SPR sensor showed an approximately 5 times greater loss of signal than the LSPR sensor. A comprehensive set of nonspecific binding studies demonstrated that this signal difference was not the consequence of greater nonspecific binding to the LSPR sensor but rather a systematic function of the Ag nanoparticle's nanoscale structure. Ag nanoparticles with larger aspect ratios showed larger dissociation phase responses than those with smaller aspect ratios. A theoretical analysis based on finite element electrodynamics demonstrates that this results from the characteristic decay length of the electromagnetic fields surrounding Ag nanoparticles being of comparable dimensions to the ConA molecules. Finally, an elementary (2 x 1) multiplexed version of an LSPR carbohydrate sensing chip to probe the simultaneous binding of ConA to mannose and galactose-functionalized SAMs has been demonstrated.  相似文献   

2.
静电组装金纳米粒子制备局域表面等离子体共振传感膜   总被引:4,自引:1,他引:3  
采用聚电解质自组装技术制备局域表面等离子体共振(LSPR)传感膜的方法, 在玻璃基片上依次沉积聚电解质PDDA, PSS和PVTC, 并通过静电吸附构建胶体金纳米粒子自组装膜形成LSPR传感膜. 利用扫描电镜对LSPR传感膜表面形貌以及膜中金纳米粒子的粒径进行了表征, 同时通过紫外-可见消光光谱对其灵敏度和渗透深度等重要参数进行检测. 研究结果表明, 所制备的LSPR传感膜粒子分布均匀、单分散性好、稳定性高、重现性好; 消光峰位对样品溶液折射率的检测灵敏度为71 nm/RIU, 相应的峰强检测灵敏度为0.21 AU/RIU, 对表面吸附层的渗透深度约为16 nm.  相似文献   

3.
Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (lambda(max,bare)). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning lambda(max,bare) through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.  相似文献   

4.
基于局域表面等离子体共振效应的光学生物传感器   总被引:1,自引:0,他引:1  
肖桂娜  蔡继业 《化学进展》2010,22(1):194-200
贵金属纳米粒子表现出许多常规块体材料所不具备的优异性能,其中局域表面等离子体共振(LSPR)特性是研究热点之一。LSPR的形状和位置与纳米粒子的组成、大小、形状、介电性质以及局域介质环境密切相关。基于这一特性,贵金属纳米粒子已广泛应用于光学生物传感器、光过滤器和表面增强光谱等领域。本文对各种结构的贵金属纳米粒子的制备方法及其在光学生物传感器中的应用进行了综述,并对LSPR纳米传感器的未来发展前景做了展望。  相似文献   

5.
Frequency-scanned excitation profiles of coherent second harmonic generation (SHG) were measured for silver nanoparticle arrays prepared by nanosphere lithography. The frequency of the fundamental beam did not coincide with the localized surface plasmon resonance (LSPR) of the nanoparticles and was tuned so that the coherent second harmonic (SH) emission was in the region of the LSPR at 720-750 nm. The SH emission from the arrays was compared with a smooth silver film to identify an enhancement of SH emission efficiency that peaks near approximately 650 nm for nanoparticles 50 nm in height. The polarization and orientation dependence of this enhancement suggests that it is related to a dipolar LSPR mode polarized normal to the plane of the substrate. Linear extinction spectra are dominated by in-plane dipoles and do not show this weak out-of-plane LSPR mode. The nanoparticle arrays are truncated tetrahedrons symmetrically oriented by nanosphere lithography to cancel SH from in-plane dipoles which allows observation of the weak out-of-plane component.  相似文献   

6.
In this study, gold nanoparticles (GNP) were stabilized for the first time as dimers by a conducting polymer (CP). The morphology of kissing particles was examined by high-resolution transmission electronic microscopy (HRTEM). The broad-band localized surface plasmon resonance (LSPR) tunable by solvent variation and molecular binding was demonstrated by UV-vis measurement. The sensitivity of the longitudinal LSPR to the surrounding media or the binding of a biomolecule was 6 times higher than that of the transversal LSPR. A homogeneous bioassay was directly developed from the highly stable GNP-CP dimers with LSPR as prober, and protein sensing with detection limit well below 100 ng/mL was achieved.  相似文献   

7.
The bright colours of noble metal particles have attracted considerable interest since historical times, where they were used as decorative pigments in stained glass windows. More recently, the tuneable optical properties of metal nanoparticles and their addressability via spectroscopic techniques have brought them back into the forefront of fundamental and applied research fields. Much of the recent attention concerning metal nanoparticles such as gold and silver has been their use as small-volume, ultra-sensitive label-free optical sensors. Plasmonic nanoparticles act in this case as transducers that convert changes in the local refractive index into spectral shifts of the localized surface plasmon resonance (LSPR) band. This LSPR-shift assay is a general technique for measuring binding affinities and rates from any molecule that induces a change in the local refractive index around the metallic nanostructures. By attaching molecular recognition elements (chemical or biological ligands) on the nanostructures, specificity and selectivity to the analyte of interest are introduced into the nanosensor. In this review, we will discuss the different methods used to fabricate plasmonic nanosensors. A special emphasis will be given to techniques used to link plasmonic nanostructures to surfaces. While the difference between colorimetric and refractive index sensing approaches will be briefly described, the importance to distinguish between bulk refractive index (RI) sensing and molecular near-field refractive index sensing will be discussed. The recent progress made in the development of novel surface functionalization strategies together with the formation of optically and mechanically stable LSPR sensors will be highlighted.  相似文献   

8.
We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies.  相似文献   

9.
M Couture  LS Live  A Dhawan  JF Masson 《The Analyst》2012,137(18):4162-4170
The debate is still ongoing on the optimal mode of interrogation for surface plasmon resonance (SPR) sensors. Comparative studies previously demonstrated that nanoparticles exhibiting a localized SPR (LSPR) have superior sensitivity to molecular adsorption processes while thin Au film-based propagating SPR is more sensitive to bulk refractive index. In this paper, it is demonstrated that nanohole arrays (1000 nm periodicity, 600 nm diameter and 125 nm depth), which support both LSPR and propagating SPR modes, exhibited superior sensitivity to bulk refractive index and improved detection limits for IgG sensing by using the Kretschmann configuration. The greater sensitivity to IgG detection in the Kretschmann configuration was obtained despite the shorter penetration depth of nanohole arrays excited in the enhanced optical transmission (EOT) configuration. The decay length of the electromagnetic field in EOT mode was estimated to be approximately 140 nm using a layer-by-layer deposition technique of polyelectrolytes (PAH and PSS) and was confirmed with 3D FDTD simulations, which was lengthen by almost a factor of two in the Kretschmann configuration. Spectroscopic data and field depth were correlated with RCWA and FDTD simulations, which were in good agreement with the experimental results. Considering these analytical parameters, it is advantageous to develop sensors based on nanohole arrays in the Kretschmann configuration of SPR.  相似文献   

10.
Localized surface plasmon resonance (LSPR) is an optical phenomena generated by light when it interacts with conductive nanoparticles (NPs) that are smaller than the incident wavelength. As in surface plasmon resonance, the electric field of incident light can be deposited to collectively excite electrons of a conduction band, with the result being coherent localized plasmon oscillations with a resonant frequency that strongly depends on the composition, size, geometry, dielectric environment and separation distance of NPs. This review serves to describe the physical theory of LSPR formation at the surface of nanostructures, and the potential for this optical technology to serve as a basis for the development bioassays and biosensing of high sensitivity. The benefits and challenges associated with various experimental designs of nanoparticles and detection systems, as well as creative approaches that have been developed to improve sensitivity and limits of detection are highlighted using examples from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号