首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Developing rechargeable Na–CO2 batteries is significant for energy conversion and utilization of CO2. However, the reported batteries in pure CO2 atmosphere are non‐rechargeable with limited discharge capacity of 200 mAh g?1. Herein, we realized the rechargeability of a Na–CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2+4 Na?2 Na2CO3+C. The battery consists of a Na anode, an ether‐based electrolyte, and a designed cathode with electrolyte‐treated multi‐wall carbon nanotubes, and shows reversible capacity of 60000 mAh g?1 at 1 A g?1 (≈1000 Wh kg?1) and runs for 200 cycles with controlled capacity of 2000 mAh g?1 at charge voltage <3.7 V. The porous structure, high electro‐conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2.  相似文献   

2.
Poly(1,5‐diaminoanthraquinone) is synthesized by oxidative polymerization of diaminoanthraquinone monomers and investigated as an organic host for Li‐storage reaction. Benefiting from its high density of redox‐active, Li+‐associable benzoquinone groups attached to conducting polyaniline backbones, this polymer undergoes its cathodic reaction predominately through Li+‐insertion/extraction processes, delivering a very high reversible capacity of 285 mAh g?1. In addition, the PDAQ polymer cathode exhibits an excellent rate capability (125 mAh g?1 at 800 mA g?1) and a considerable cyclability with a capacity retention of ~160 mAh g?1 over 200 cycles, possibly serving as a sustainable, high capacity Li+ host cathode for Li‐ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 235–238  相似文献   

3.
Li‐rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium‐ion battery and its Na+ storage properties are comprehensively studied in terms of galvanostatic charge–discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium‐ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g?1 at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g?1 for 200 cycles at 5 C rate. Moreover, ex situ ICP‐OES suggests interesting mixed‐ions migration processes: In the initial two cycles, only Li+ can intercalate into the LNCM cathode, whereas both Li+ and Na+ work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge–discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium‐ion batteries.  相似文献   

4.
MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high‐performance anode in Na‐ion batteries. By controlling the cut‐off voltage to the range of 0.4–3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g?1 at 0.05 A g?1, 300 mAh g?1 at 1 A g?1, and 195 mAh g?1 at 10 A g?1. An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na+ storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na+ ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high‐rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na‐ion batteries.  相似文献   

5.
We report a rational design of a sulfur heterocyclic quinone (dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone=DTT) used as a cathode (uptake of four lithium ions to form Li4DTT) and a conductive polymer [poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)=PEDOT:PSS) used as a binder for a high‐performance rechargeable lithium‐ion battery. Because of the reduced energy level of the lowest unoccupied molecular orbital (LUMO) caused by the introduced S atoms, the initial Li‐ion intercalation potential of DTT is 2.89 V, which is 0.3 V higher than that of its carbon analog. Meanwhile, there is a noncovalent interaction between DTT and PEDOT:PSS, which remarkably suppressed the dissolution and enhanced the conductivity of DTT, thus leading to the great improvement of the electrochemical performance. The DTT cathode with the PEDOT:PSS binder displays a long‐term cycling stability (292 mAh g?1 for the first cycle, 266 mAh g?1 after 200 cycles at 0.1 C) and a high rate capability (220 mAh g?1 at 1 C). This design strategy based on a noncovalent interaction is very effective for the application of small organic molecules as the cathode of rechargeable lithium‐ion batteries.  相似文献   

6.
A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g?1. A reversible capacity of 113 mAh g?1 was retained even after 100 cycles when cycled at a high current density of 522 mA g?1. Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X‐ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation–intercalation of chloride ions in the VOCl electrode.  相似文献   

7.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

8.
A key challenge for potassium‐ion batteries is to explore low‐cost electrode materials that allow fast and reversible insertion of large‐ionic‐size K+. Here, we report an inorganic‐open‐framework anode (KTiOPO4), which achieves a reversible capacity of up to 102 mAh g?1 (307 mAh cm?3), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+), a long lifespan of over 200 cycles, and K+‐transport kinetics ≈10 times faster than those of Na‐superionic conductors. Combined experimental analysis and first‐principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+‐insertion into graphite (≈10 %). KTiOPO4 exhibits quasi‐3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open‐frameworks may open a new avenue for exploring low‐cost, stable and fast‐kinetic battery chemistry.  相似文献   

9.
A key challenge for potassium‐ion batteries is to explore low‐cost electrode materials that allow fast and reversible insertion of large‐ionic‐size K+. Here, we report an inorganic‐open‐framework anode (KTiOPO4), which achieves a reversible capacity of up to 102 mAh g?1 (307 mAh cm?3), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+), a long lifespan of over 200 cycles, and K+‐transport kinetics ≈10 times faster than those of Na‐superionic conductors. Combined experimental analysis and first‐principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+‐insertion into graphite (≈10 %). KTiOPO4 exhibits quasi‐3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open‐frameworks may open a new avenue for exploring low‐cost, stable and fast‐kinetic battery chemistry.  相似文献   

10.
GeO2 is a promising anode material for lithium ion batteries due to its high theoretical capacity (1126 mAh g?1 for reversibly storing 4.4 Li+), and moderately low operating voltage (<1.5 V). Nevertheless, the fabrication of truly durable GeO2 anode with satisfactory rate capability and cycling stability remains a big challenge because of its inherent low conductivity, and the large volume expansion upon charge-discharge that causes severe capacity fading. In this study, an innovative nanostructure with size-adjustable GeO2 nanoparticles (16–26 nm) embedded in continuous S-doped carbon (GeO2/S-doped carbon, GSC) has been successfully fabricated via a facile in-situ simultaneous polymerization method followed by heat treatment. The electrochemical results indicate that the as-prepared GSC composites show high reversible capacity (672.9 mAh g?1 at 50 mA g?1), superior rate capability (332.9 mAh g?1 at 1000 mA g?1), and long-term cycle life (179 mAh g?1 after 500 cycles at 1000 mA g?1) as anode materials for lithium ion batteries. The excellent electrochemical performance of GSC nanocomposites could be ascribed to the homogeneous and continuous S-doped carbon matrix, which provides shortened ion diffusion pathway, increased electrical conductivity, enhanced structural stability, and introduced surface/interface property.  相似文献   

11.
Li‐O2 batteries are promising candidates for next‐generation high‐energy‐density battery systems. However, the main problems of Li–O2 batteries include the poor rate capability of the cathode and the instability of the Li anode. Herein, an ester‐based liquid additive, 2,2,2‐trichloroethyl chloroformate, was introduced into the conventional electrolyte of a Li–O2 battery. Versatile effects of this additive on the oxygen cathode and the Li metal anode became evident. The Li–O2 battery showed an outstanding rate capability of 2005 mAh g?1 with a remarkably decreased charge potential at a large current density of 1000 mA g?1. The positive effect of the halide ester on the rate capacity is associated with the improved solubility of Li2O2 in the electrolyte and the increased diffusion rate of O2. Furthermore, the ester promotes the formation of a solid–electrolyte interphase layer on the surface of the Li metal, which restrains the loss and volume change of the Li electrode during stripping and plating, thereby achieving a cycling stability over 900 h and a Li capacity utilization of up to 10 mAh cm?2.  相似文献   

12.
Nanostructured iron compounds as lithium‐ion‐battery anode material have attracted considerable attention with respect to improved electrochemical energy storage and excellent specific capacity, so lots of iron‐based composites have been developed. Herein, a novel composite composed of three‐dimensional Fe2N@C microspheres grown on reduced graphite oxide (denoted as Fe2N@C‐RGO) has been synthesized through a simple and effective technique assisted by a hydrothermal and subsequent heating treatment process. As the anode material for lithium‐ion batteries, the synthetic Fe2N@C‐RGO displayed excellent Li+‐ion storage performance with a considerable initial capacity of 847 mAh g?1, a superior cycle stability (a specific discharge capacity of 760 mAh g?1 remained after the 100th cycle), and an improved rate‐capability performance compared with those of the pure Fe2N and Fe2N‐RGO nanostructures. The good performance should be attributed to the existence of RGO layers that can facilitate to enhance the conductivity and shorten the lithium‐ion diffusion path; in addition, the carbon layer on the surface of Fe2N can avert the structure decay caused by the volume change during the lithiation/delithiation process. Moreover, in situ X‐ray absorption fine‐structure analysis demonstrated that the excellent performance can be attributed to the lack of any obvious change in the coordination geometry of Fe2N@C‐RGO during the charge/discharge processes.  相似文献   

13.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2?, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li‐air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open‐air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high‐performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2?. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g?1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

14.
Tin‐based oxide Li2SnO3 has been synthesized by a hydrothermal route as negative material for lithium‐ion batteries. The microstructure and electrochemical properties of the as‐synthesized materials were investigated by some characterizations means and electrochemical measurements. The as‐synthesized Li2SnO3 is a porous rod, which is composed of many uniform and regular nano‐flakes with a size of 50–60 nm. Li2SnO3 also displays an electrochemical performance with high capacity and good cycling stability (510.2 mAh g?1 after 50 cycles at a current density of 60 mA g?1 between 0.0 V and 2.0 V verusus Li/Li+). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

16.
Rechargeable Mg batteries (RMBs) are advantageous large-scale energy-storage devices because of the high abundance and high safety, but exploring high-performance cathodes remains the largest difficulty for their development. Compared with oxides and sulfides, selenides show better Mg-storage performance because the weaker interaction with the Mg2+ cation favors fast kinetics. Herein, nanorod-like FeSe2 was synthesized and investigated as a cathode for RMBs. Compared with microspheres and microparticles, nanorods exhibit higher capacity and better rate capability with a smaller particle size. The FeSe2 nanorods show a high capacity of 191 mAh g−1 at 50 mA g−1 and a good rate performance of 39 mAh g−1 at 1000 mA g−1. Ex situ characterizations demonstrate the Mg2+ intercalation mechanism for FeSe2, and a slight conversion reaction occurs on the surface of the particles. The capacity fading is mainly because of the dissolution of Fe2+, which is caused by the reaction between Fe2+ and Cl of the electrolyte during the charge process on the surface of the particles. The surface of FeSe2 is mainly selenium after long cycling, which may also dissolve in the electrolyte during cycling. The present work develops a new type of Mg2+ intercalation cathode for RMBs. More importantly, the fading mechanism revealed herein has considered the specificity of Mg battery electrolyte and would assist a better understanding of selenide cathodes for RMBs.  相似文献   

17.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

18.
Rechargeable magnesium batteries are a promising alternative to Li‐based energy storage because of their abundant and inexpensive components. The high sensitivity and reactivity of the organic Mg2+ electrolyte makes their development challenging. Herein, we develop a new hybrid electrolyte, based on three simple inorganic salts of MgCl2, AlCl3, and Mg(TFSI)2. The electrolyte exhibits unprecedented electrochemical performance for reversible deposition and stripping of Mg, with Coulombic efficiency up to 97 %, overpotential down to 0.10 V, good stability especially for aluminum and stainless‐steel current collectors. It maintained its activity even after introducing 2000 ppm water and it could be prepared from impure chemicals. A full cell with the hybrid electrolyte and Mg foil as anode, Mo6S8 as cathode gave a specific capacity of 98 mAh g?1 and maintained 94 % capacity after 100 cycles at a rate of 0.20 C, indicating the good compatibility of the hybrid electrolyte.  相似文献   

19.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g?1 which retains at 600 mAh g?1 after 50 cycles at 0.25 A g?1.  相似文献   

20.
Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2’,3’-c] phenazine (HATN) anode and a MnO2@graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2@GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g−1 at 0.5 A g−1, 97 mAh g−1 at 50 A g−1), attractive energy density (182.1 Wh kg−1) and power density (31.2 kW kg−1), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号