首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A method for extracting coenzyme Q10 (CoQ10) from Artemia was developed. 1 g of fresh Artemia was incubated with 75 % acetic acid at (30 ± 2)°C for 24 h, followed by three consecutive extractions with a mixture of 5 mL of hexane and 5 mL of ethanol, then analysis by a validated high-performance liquid chromatography with a diode-array detector. The calibration curve for CoQ10 was linear in a range of 1–50 μg mL?1. The limits of detection and quantification were 0.3 μg mL?1 and 1.1 μg mL?1, respectively. Mean recoveries were 94–100 % with a high precision of below 10 %. The method developed was found to be simple, efficient and the time required for releasing CoQ10 from Artemia was short. The method provides not only low energy consumption but is also practical for industrial applications.  相似文献   

2.
A method for the determination of iodate was developed by reversed-phase high-performance liquid chromatography with UV detection. Iodate was converted to iodine, which was separated from the matrix using a reversed-phase Ultrasphere C18 column (250 × 4.6 mm, 5 μm) with methanol-1 mmol L?1 H3PO4 (20:80, v/v) as mobile phase at 1.00 mL min?1 and UV detection at 224 nm. The calibration graph was linear from 0.05 μg mL?1 to 5.00μg mL?1 for iodine with a correlation coefficient of 0.9994 (n=7). The detection limit was 0.01 μg mL?1. The method was successfully applied to the determination of iodate in iodized salt. The recovery was from 96% to 101% and the relative standard deviation was in the range of 1.5% to 2.9%.  相似文献   

3.
Currently, the concentrations of methylamines in fine particulate matter (PM) are most often measured by aerosol time-of-flight mass spectrometry. A novel method for identification and determination of methylamines and methylamine-N-oxides in fine particles based on solid phase extraction (SPE) coupled with ion chromatography (IC) was developed. The experimental conditions including SPE conditions and chromatographic conditions were optimized. The quartz filter loaded with particulate matter (PM) samples was ultrasonically extracted with 20 mL of methanol and water (1:3, V/V) and the extraction process was repeated twice. After extraction, a total of 60 mL of extraction solvent was dropped into the extraction equipment for SPE. The Agilent AccuBond C18 was chosen for enriching the methylamine, dimethylamine, trimethylamine and trimethylamine-N-oxide in fine particles. Under the optimum conditions, the target species on Agilent AccuBond C18 were washed by 0.5 mL of acetonitrile solution and then concentrated (2 mL) before injecting into IC for analysis. A PRP X-200 (250 mm × 4 mm i.d.) was used for separation of analytes at 25 °C. The mobile phase was a mixture of 3% (V/V) acetonitrile solution and 5 mM nitric acid with the flow rate of 1 mL min–1. The four aliphatic amine species were fully resolved and completely separated within 30 min. The linearity of the four compounds ranged from 0.45 μg kg–1 to 1000 μg kg–1 with precisions of 2%–4% and detection limits of 0.002–0.003 μg m–3. The recoveries of the four aliphatic amine species in real PM samples were higher than 90%. This method was successfully applied in the analysis of real fine PM samples collected in Beijing. The concentrations of trimethylamine and methylamine-N-oxides were in the range of (0.01 ± 0.001) μg m–3–(0.08 ± 0.002) μg m–3 and (0.05 ± 0.001) μg m–3–(0.14 ± 0.002) μg m–3 for Beijing dust and haze PM samples, respectively.  相似文献   

4.
Lead (25–200 μg) is precipitated as Pb3[Cr(SCN)6]2. The filtered precipitate is treated with 10% carbonate solution, and the thiocyanate dissolved is oxidized by iodine to sulphate at pH 8.2. After acidification, the excess of iodine is extracted into chloroform, and the iodide ion retained in the aqueous solution is amplified by bromine oxidation and subsequent treatment with more iodide. The method provides 152 iodine atoms for each original lead ion. Only Bi3+ and Cu2+ interfere seriously.  相似文献   

5.
A new detection method using headspace single-drop microextraction (HS-SDME) coupled to gas chromatography (GC) was established to determine the iodine in milk powder and urine. The derivative from the reaction between iodine and butanone in the acidic media was extracted into a micro-drop then determined by GC-ECD. With the optimisation of HS-SDME and derivatisation, the calibration curve showed good linearity within the range of 0.004–0.1 μg mL?1 (0.004–0.1 μg g?1) (R 2 = 0.9991), and the limits of detection for milk powder and urine were 0.0018 μg g?1 and 0.36 μg L?1, respectively. The mean recoveries of milk powder and urine were 90.0–107 % and 89.4–101 % with mean RSD of 1.7–3.4 % and 2.7–3.3 %, respectively. This detection method affords a number of advantages, such as being simple, rapid, and inexpensive, with low organic solvent consumption, and is remarkably free from interference effects, rendering it an efficient method for the determination of iodine in milk powder and urine samples.  相似文献   

6.
The method is based on the formation of a purple azoxine dye by coupling diazotized p-nitroaniline with 8-quinolinol. Beer's law is obeyed at 550 nm in the range 2–28 μg NO2- per 25 ml. The molar absorptivity and Sandell sensitivity are 3.88 × 104 l mol-1 cm-1 and 0.0012 μg cm-2, respectively.  相似文献   

7.
The iodine—azide reaction catalyzed by sulphur-containing compounds is followed simultaneously by optical and thermometric measurements in closed and flowing systems. In the closed system, thiosulphate can be determined in the range 32.4–324 μg ml-1, by observing the turbidity caused by the nitrogen formed during the reaction and the temperature changes. With the flow apparatus, thiosulphate can be determined in the range 112–1120 μg ml-1 by continuously mixing the sample and reagent solutions. H2S in nitrogen 5–100 ppm) is measured by sweeping the gas into the reaction Cuvette. In a third flow procedure, H2S is liberated continuously from sodium sulphide solutions (0.1–10 μg S2- ml-1) by ascorbic acid, and swept to the measuring cuvette with nitrogen.  相似文献   

8.
Low lead levels in the femurs of mice fed with a lead-depleted diet have been determined by use of electrothermal atomic absorption spectrometry with Zeeman-effect background correction. The method is based on the use of Mg(NO3)2/Pd as matrix modifier which enables significant reduction of the spectral interferences prevalent if chemical modifiers based on NH4H2PO4 with either Ca or Mg are used for samples rich in Ca3(PO4)2 matrix. The method was developed and validated by use of the NIST standard reference material 1486 bone. Bones were decomposed in a pressurized microwave-heated system using 70% nitric acid. Forty-three mice femurs, with a mass of 74.62 ± 12.54 mg, were dissolved in concentrated nitric acid. The lead results found in SRM 1486 (1.25 ± 0.15 μg g–1, n = 9) were in good agreement with the certificate (1.335 ± 0.014 μg g–1). Recoveries of 200 ng lead added to the SRM before or after digestion were 99.0 ± 1.4% and 98.5 ± 1.6%, respectively. The lead detection limit in bone samples is 0.06 μg g–1 dry mass. This method is, therefore, suitable for the determination of very low lead levels (0.06–0.20 μg Pb kg–1 bone) in the femurs of mice fed a diet with lead level of < 20μg kg–1.  相似文献   

9.
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l−1 HNO3 and in 1+1 v/v diluted wine using mixtures of Pd(NO3)2+Mg(NO3)2 and NH4H2PO4+Mg(NO3)2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l−1 HNO3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10–1.0 μg l−1 Cd and 5.0–50 μg l−1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l−1 for Cd, 0.8 μg l−1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l−1 and for Pb at 500 μg l−1. The relative standard deviations (n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.  相似文献   

10.
A new sensitive spectrophotometric method for the determination of glyphosate herbicide in environmental and agricultural samples is developed. The reaction is based on diazotization followed by coupling of glyphosate with p-dimethyl amino benzaldehyde. The resulted complex absorption spectra was observed at λmax = 420 nm. The effects of other metal ions and pesticides were also tested for selective determination of glyphosate. The analytical parameters were optimized and have been successfully applied for determination of glyphosate in various environmental samples such as soil, water and vegetables. This method has a lower limit detection of 6 μg of glyphosate. Beer's law is obeyed over the concentration range of 6.0 μg–24.0 μg glyphosate in 25 mL of the final solution at 420 nm. The standard deviation and relative standard deviation calculated are 0.0055 and 1.023, respectively. The molar absorptivity of the colored system is 1.91 × 1010 L mol?1cm?1 and Sandell's sensitivity is found 0.408 × 10?5 μg cm?2. The proposed method is simple, sensitive, highly reproducible and time saving as compare to those complicated time consuming methods.  相似文献   

11.
Water-soluble porphyrin, α, β, γ, δ-tetraphenylphorphine trisulfonate (TPPS, H2R), was found to be a very useful agent for both the direct spectrophotometric determination and the photometric titration of copper(II). The molar absorptivity of H4R2+ at 434 nm is 5.0·105 and the spectrophotometric sensitivity is 0.00013 μg Cu cm?2 for A=0.001. Beer's law is followed in the range 0.006 μg–0.06 μg Cu ml?1. Among twenty-two elements examined, only zinc(II) seriously interfered. Acid dissociation constants and salt effects on the spectra of TPPS were evaluated.  相似文献   

12.
Two simple, selective and sensitive spectrophotometric methods are described for the determination of pheniramine maleate (PAM) in pure and dosage forms. The method is based on the reaction of PAM with hypochlorite in the presence of Kolthoff buffer (phosphate-borate) of pH 7.0 to form the chloro derivative of PAM, destruction of the excess hypochlorite by nitrite ion (the chloro derivative of drug is unaffected under the optimized conditions) followed by the oxidation of iodide with the chloro derivative of PAM to iodine (I 3 ? which is either measured directly at 355 (method A) or reacted with starch to form a blue chromogen measurable at 590 nm (method B). The optimum conditions that affect the reaction were ascertained, and under these conditions linear relationship was obtained in the concentration ranges of 2–50 and 1–25 μg/mL PAM in methods A and B, respectively. The calculated molar absorptivity values are 7.26 × 103 and 1.28 × 104 L/(mol cm) for method A and method B, respectively. Sandell’s sensitivity values, limits of detection (LOD) and quantification (LOQ) are calculated as per ICH guidelines. The proposed methods were applied successfully to the determination of PAM in tablets and injection with good accuracy and precision and without interferences from common additives. The results obtained by the proposed methods were compared favourably with those of the reference method. The accuracy and reliability of the proposed methods were further checked by recovery studies via standard addition procedure.  相似文献   

13.
A procedure is described in which gold(III) is quantitatively extracted with an amidine into chloroform over the acidity range pH 3.0–11.0 M HCl, followed by its selective spectrophotometric determination by interaction of the extract with methylene blue in the pH range 3.0–9.0. The molar absorptivity of the coloured complex formed by extraction with ten different amidines and methylene blue reaction lie in the range 1.1 × 104?6.5 × 104 1 mol?1 cm?1 at λmax (650 nm) in chloroform. The simplest compound, N, N′-diphenylbenzamidine, was chosen for detailed study. The limit of detection is 5 μg Au l?1. The method is free from interferences from the metals that are generally associated with gold. The method is simple, reproducible and applicable to the accurate recovery of gold from low-grade ores containing the metal at levels of > 1.5 μg g?1.  相似文献   

14.
A new simple and sensitive and selective spectrophotometric method has been developed for the determination of ascorbic acid (AA) at trace level using a new reagent, leuco malachite green (LMG). AAreacts with potassium iodide‐iodate solution under acidic conditions to liberate iodine and the liberated iodine selectively oxidizes LMG to MG dye. The colour of the dye was measured at 620 nm. Beer's law is obeyed over the concentration range of 0.8–8 iμg μAA per 25 mL of final solution (0.032–0.32 ppm). The apparent molar absorptivity and Sandell's sensitivity of the method were found to be 2.98 × 105 l mol−1 cm−1, 0.0042 μg cm−2, and respectively. Statistical treatment of the experimental results indicates that the method is precise and accurate. The method is free from interference of common ions and many of the ingredients commonly found in pharmaceuticals. The reliability of the method was established by parallel determination against Leucocrystal violet (LCV) method. The method described was satisfactorily applied for the determination of AA in fruit juices, pharmaceuticals and biological samples.  相似文献   

15.
Nitrite is diazotised with p-nitroaniline in hydrochloric acid and coupled with 8-quinolinol in alkaline medium to give a purple azo dye (λmax = 550 nm, ? = 3.88 × 104 l mol-1 cm-1). Extraction of the dye into 3-methyl-1-butanol shifts the absorption maximum to 570 nm and improves the apparent molar absorptivity to 5.852 × 104 l mol-1 cm-1. Beer's law is obeyed for 0.01–0.06 ppm nitrite. The Sandell sensitivity is 0.00078 μg cm-2. The method is applicable to polluted waters.  相似文献   

16.
Compound [CdI2(Me4Pyz)] is synthesized by the reaction of CdI2 with tetramethylpyrazine (Me4Pyz, C8H12N2), and its structure is determined (CIF file CCDC 1538646). The crystals are monoclinic, space group C2/c, a = 14.732(3), b = 11.084(2), c = 7.792(2) Å, ß = 95.27(3)°, V = 1267.0(4) Å, ?calcd = 2.634 g/cm3, Z = 4. Polymer chains [CdI2(Me4Pyz)]221e extended along the direction [001] are formed in the structure of the complex due to the bridging iodine atoms. The coordination polyhedron of the Cd2+ ion is a trigonal bipyramid with four bridging iodine atoms and one nitrogen atom of the organic ligand lying in the equatorial plane along with two iodine atoms. The distance between the cadmium atoms in the chain is 4.155 Å.  相似文献   

17.
Rhodamine‐B has been proposed as a simple and sensitive colorimetric reagent for the estimation of sulphur dioxide in air. The air sample containing sulphur dioxide is passed through the absorbing solution of aqueous potassium iodate and N‐chlorosuccinimide to liberate iodine. The liberated iodine bleaches the pinkish red coloured rhodamine‐B dye, which measured at 555 nm. Beer's law was obeyed in the range of 0.5–5.0 μg, of sulphite per 25 mL (0.02–0.2 ppm) equivalent to 0.4–4.0 μg of sulphur dioxide (0.016–0.16 ppm). The molar absorptivity and Sandell's sensitivity were found to be 4.56 × 105 l mol?1 cm?1 and 0.00017 μg cm?2, respectively. The method has been suitably modified and successfully applied to the determination of sulphites in water after liberation of sulphur dioxide in acidic medium.  相似文献   

18.
A new reagent system using rhodamine‐B dye for the determination of selenium is described. The method is based on the reaction of selenium with acidified potassium iodide to liberate iodine. The liberated iodine bleaches the pink colour rhodamine‐B, which is measured at 555 nm. Beer's law is obeyed over the concentration range of 1–10 μg of selenium final solution volume of 25 mL (0.04–0.4 ppm) and the apparent molar absorptivity and Sandell's sensitivity was found to be 1.96× 105 l mol?1 cm?1 and 0.0004 μg cm?2, respectively. The method is simple, sensitive, and selective and is satisfactorily applied to micro‐level determination of selenium in various environmental and cosmetic samples.  相似文献   

19.
A simple, rapid, specific, sensitive HPLC method has been developed for the determination of piroxicam in the tablet dosage form and in human plasma. The method totally eliminates solvent extraction and time-consuming separation procedures. Plasma proteins were precipitated by addition of 3:1 (v/v) acetonitrile-methanol, ZnSO4, and MgSO4 and the supernatant was injected directly on to a 250 mm × 4.6 mm, 5 μm particle Spherisorb analytical column. Acetonitrile-methanol-0.04 mol L?1 KH2PO4, 40:10:50 (v/v); pH 3.8, was used as mobile phase. The drug was detected by UV detection at 330 nm. The response was linear over the range of 0.01–10 μg mL?1 and 0.025–5 μg mL?1 in mobile phase and human plasma samples, respectively. The proposed method was used without interference from the endogenous substances, for determination of piroxicam in plasma samples obtained from healthy volunteers. The results revealed that the method would be useful in monitoring plasma levels of the drug during pharmacokinetic studies. Assay of piroxicam in its dosage forms for quality-control purposes could also be performed successfully by use of this method.  相似文献   

20.
A rapid and sensitive method to assay baicalin in rat hippocampus was applied using a simple liquid-liquid extraction technique followed by high-performance liquid chromatography. Baicalin and the internal standard, 4-nitro-benzoic acid, were extracted twice from the homogenized solution with acetonitrile and after centrifugation the combined extracts were evaporated. To the remaining residue 0.1 mL of methanol were added to obtain the sample solution. A 10 μL volume of sample solution was injected onto HPLC for analysis carried out on a Zorbax SB-C18 column using a mobile phase of methanol–water-H3PO4 (45:55:0.2, v/v/v, pH 3.0) at 277 nm with a UV detector. The calibration curve for baicalin was linear over the concentration range of 0.05–1.6 μg mg?1 in hippocampus. Recoveries were reasonable for routine analyses (>88%) and the LOD and LOQ ranged from 0.006 to 0.009 μg mg?1 and 0.015 to 0.035 μg mg?1, respectively. The coefficient of variation of the assay precision was less than 5.9%, and the accuracy exceeded 98%. The method was applied to determine the time course of baicalin in rat hippocampus, following the intravenously administration of flavonoids from Scutellariae Radix extract at 90 mg kg?1 of baicalin to a male Wistar rat. This method provides a very simple, sensitive, and accurate way to determine baicalin concentrations in rat hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号