首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Enantioselective indicator displacement assays (eIDAs) for alpha-amino acids were conducted in a 96-well plate format to demonstrate the viability of the technique for the high-throughput screening (HTS) of enantiomeric excess (ee) values. Chiral receptors [Cu(II)(1)](2+) and [Cu(II)(2)](2+) with the indicator chrome azurol S were implemented for the eIDAs. Enantiomeric excess calibration curves were made using both receptors and then used to analyze true test samples. These results were compared to those previously obtained with a conventional UV-vis spectrophotometer, and they showed little to no loss of accuracy, while the speed of analysis was increased. A sample of valine of unknown ee was synthesized through an asymmetric reaction to produce a realistic reaction sample, which was analyzed using receptor [Cu(II)(1)](2+). The experimentally determined ee using our eIDA was compared to that obtained by chiral HPLC and (1)H NMR chiral shift reagent analysis. This gave errors of 4.7% and 12.0%, respectively. In addition to the use of ee calibration curves, an artificial neural network (ANN) was used to determine the % L-amino acid of the test samples and of the sample of valine of unknown ee from the asymmetric reaction. This method obtained errors of 5.9% and 2.2% compared to chiral HPLC and (1)H NMR chiral shift reagent analysis, respectively. The technique using calibration curves for the determination of ee on a 96-well plate allows one to determine 96 ee values in under a minute, enabling its use for HTS of asymmetric reactions with acceptable accuracy.  相似文献   

2.
The previously established enantioselective indicator-displacement assays (eIDAs) for the determination of concentration and enantiomeric excess (ee) require two spectroscopic measurements for each chiral sample. To further simplify the operation of eIDAs, we now introduce two innovative analytical methods, both of which utilize a dual-chamber quartz cuvette, which reduces the number of spectroscopic measurements from two to one. An attractive feature of this cuvette is that the concentration- and ee-dependent absorption data can be collected at the isosbestic points or transparent regions of the spectra recorded in each individual chamber, thereby reflecting optical changes that occur in the other chamber. Therefore, two independent equations, which are needed to solve the values of the two independent variables-concentration and ee-can be established with only a single spectroscopic measurement. The first method takes advantage of this feature in conjunction with a judicious choice of indicator/host combinations to generate concentration- and ee-dependent calibration curves. Our second method removes the requirement to measure equilibrium constants and molar absorptivities altogether through the use of artificial neural networks (ANNs). The most frequently used three-layer feed-forward network is generated, which relates the absorption data to concentration and ee of the samples by training with a back propagation procedure. Here, the data collection is not limited to the isosbestic points or transparent regions. Both approaches enabled accurate and rapid determination of concentration and ee of chiral samples. The technology removes the relative difficulty, which is the need for two separate measurements for concentration and ee respectively, of analyzing chiral samples compared to achiral samples. When implemented in a high-throughput format, this technology should greatly facilitate the discovery of asymmetric catalysts in the same way as conventional high-throughput screening assays.  相似文献   

3.
The association of various alpha-amino acids with four new, coordinatively unsaturated metal complexes ([Cu(5)]2+, [Cu(6)]2+, [Cu(7)]2+, and [Zn(8)]2+) was examined. The receptors [Cu(5)]2+ and [Cu(7)]2+ were found to discriminate histidine (His) from other zwitterionic alpha-amino acids by means of indicator-displacement assays (IDAs) using 5(6)-carboxyfluorescein as an indicator in buffered methanol/water (3:1) solvent. The colorimetric detection of His was achieved by using this IDA method, which appears to owe its selectivity to a unique process involving disruption of the host complex to form a 2:1 His/Cu(II) complex rather than simple indicator displacement. The occurrence of distinct intermolecular coordination processes in response to the introduction of a different amino acid is observed. X-ray crystal structures of the host metal complexes were obtained and exhibit the adoption of a variety of coordination geometries about the metal center.  相似文献   

4.
Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.  相似文献   

5.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

6.
An easy method for the determination of the enantiomeric excess (ee) of mixtures of alpha-amino acids, and also for the elucidation of the absolute configuration of each component of the mixture, is reported. The method is based on the formation of diastereoisomers by reaction of the enantiomerically pure acetylacetonate derivative [Pd(acac-O,O')(P(2)-dach)]ClO(4) (4) [P(2)-dach = (1R,2R)-C(6)H(10)(NHPPh(2))(2)] with d,l-mixtures of alpha-amino acids AaH (Pd:AaH = 1:1 molar ratio, refluxing MeOH). The reaction occurs with protonation of the acac ligand and N,O-coordination of the amino acidate group, giving the corresponding [Pd(Aa-N,O)(P(2)-dach)]ClO(4) complexes l-5 and d-6. The composition of these mixtures of amino acidate complexes was analyzed by integration of the corresponding peaks (four doublets, two for each diastereomer) in their (31)P((1)H) NMR spectra. A series of 14 alpha-amino acids was studied (a, alanine; b, 2-aminobutyric acid; c, valine; d, phenylalanine; e, proline; f, leucine; g, isoleucine; h, norleucine; i, serine; j, threonine; k, methionine; l, aspartic acid; m, glutamine; n, cysteine), and excellent agreement between the expected values of ee and those obtained from integration of the (31)P((1)H) NMR spectra was obtained. Moreover, the position of the signals of each isomer is diagnostic, in such a way that the outer doublets are always due to the l-derivatives 5a-l, while the inner ones are due to the d-derivatives 6a-l, allowing the assignation of absolute configurations to each isomer in the mixture.  相似文献   

7.
Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.  相似文献   

8.
L-Tyrosine and iodinated L-tyrosines, i.e., 3-iodo-L-tyrosine and 3,5-diiodo-L-tyrosine, are successfully used as chiral references for the chiral discrimination of aliphatic, acidic, and aromatic amino acids. Chiral discrimination is achieved by investigating the collision-induced dissociation spectra of the trimeric complex [Cu(II)(ref)(2)(A) - H](+) ion generated by electro spraying the mixture of D- or L-analyte amino acid (A), chiral reference ligand (ref) and M(II)Cl(2) (M = Ni and Cu). The relative abundances of fragment ions resulted by the competitive loss of reference and analyte amino acids are considered for measuring the degree of chiral discrimination by applying the kinetic method. The chiral discrimination ability increases as the number of iodine atom increases on the aromatic ring of the reference and the discrimination is better with Cu when compared with Ni. A large chiral discrimination is obtained for aliphatic and aromatic amino acids using iodinated L-tyrosine as the reference. Computational studies on the different stabilities of the diastereomeric complexes also support the observed differences measured by the kinetic method. The suitability of the method in the measurement of enantiomeric excess over the range of 2% to 100% ee with relative error 0.28% to 1.6% is also demonstrated.  相似文献   

9.
Three new bimetallic oxamato-based magnets with the proligand 4,5-dimethyl-1,2-phenylenebis(oxamato) (dmopba) were synthesized using water or dimethylsulfoxide (DMSO) as solvents. Single crystal X-ray diffraction provided structures for two of them: [MnCu(dmopba)(H(2)O)(3)](n)·4nH(2)O (1) and [MnCu(dmopba)(DMSO)(3)](n)·nDMSO (2). The crystalline structures for both 1 and 2 consist of linearly ordered oxamato-bridged Mn(II)Cu(II) bimetallic chains. The magnetic characterization revealed a typical behaviour of ferrimagnetic chains for 1 and 2. Least-squares fits of the experimental magnetic data performed in the 300-20 K temperature range led to J(MnCu) = -27.9 cm(-1), g(Cu) = 2.09 and g(Mn) = 1.98 for 1 and J(MnCu) = -30.5 cm(-1), g(Cu) = 2.09 and g(Mn) = 2.02 for 2 (H = -J(MnCu)∑S(Mn),(i)(S(Cu,i) + S(Cu),(i-1))). The two-dimensional ferrimagnetic system [Me(4)N](2n){Co(2)[Cu(dmopba)](3)}(n)·4nDMSO·nH(2)O (3) was prepared by reaction of Co(II) ions and an excess of [Cu(dmopba)](2-) in DMSO. The study of the temperature dependence of the magnetic susceptibility as well as the temperature and field dependences of the magnetization revealed a cluster glass-like behaviour for 3.  相似文献   

10.
In this study, we have developed two new L-tryptophan based contrast agents [Gd(Try-TTDA)(H(2)O)](2-) and [Gd(Try-ac-DOTA)(H(2)O)](-). Upon addition of Cu(II) to [Gd(Try-TTDA)(H(2)O)](2-), significant increases in the relaxivity (r(1)) and hydration number of [Gd(Try-TTDA)(H(2)O)](2-) were observed. However, it only induced a minute increase in the relaxivity (r(1)) in the case of [Gd(Try-ac-DOTA)(H(2)O)](-). Furthermore, the interaction of Cu(II) with the indole ring of Gd(III) complexes was explored by measuring the intrinsic fluorescence of the tryptophan of the Gd(III) complex. With the addition of one equivalent of Cu(II) to [Gd(Try-TTDA)(H(2)O)](2-) the indole fluorescence was completely quenched. Moreover, the [Gd(Try-TTDA)(H(2)O)](2-) complex shows excellent selectivity towards Cu(II) over other metal ions (Cu(II) > La(III) > Mg(II)). Importantly, the significant signal intensity (2073 ± 67) for in vitro MR imaging using [Gd(Try-TTDA)(H(2)O)](2-) in the presence of Cu(II) implicates that this new smart contrast agent ([Gd(Try-TTDA)(H(2)O)](2-)) can serve as a Cu(II) sensor for MR imaging.  相似文献   

11.
A series of the first coordination polymers using the [Au(CN)(4)](-) anion as a building block has been prepared. The planar tetracyanoaurate anion uses one, two, or four cyano groups to bridge to Ni(II) or Cu(II) centers and exhibits weak Au(III)-N(cyano) interactions between anions. Ni(en)(2)[Au(CN)(4)](2).H(2)O (1, en = ethylenediamine) is a molecular compound with the two [Au(CN)(4)](-) anions coordinating in a trans orientation to Ni(II) without further cyanide coordination. Cu(dien)[Au(CN)(4)](2) (2, dien = diethylenetriamine) forms a similar molecular complex; however, the dimensionality is increased through weak intermolecular Au-N(cyano) interactions of 3.002(14) A to form a 1-D zigzag chain. Cu(en)(2)[Au(CN)(4)](2) (3) also forms a molecular complex similar to 1, but with elongated axial bonds. The complex further aggregates through Au-N(cyano) interactions of 3.035(8) A to form a 2-D array. In [Cu(dmeda)(2)Au(CN)(4)][Au(CN)(4)] (4, dmeda = N,N-dimethylethylenediamine) one [Au(CN)(4)](-) anion coordinates via two cis-N(cyano) donors to the axial sites of two Cu(II) centers to form a 1-D zigzag chain of alternating [Cu(dmeda)(2)](2+) and [Au(CN)(2)](-) units; the other [Au(CN)(4)](-) anion forms a 1-D chain via Au-N(cyano) interactions. In [Cu(bipy)(H(2)O)(2)(Au(CN)(4))(0.5)][Au(CN)(4)](1.5) (5, bipy = 2,2'-bipyridine) one [Au(CN)(4)](-) anion uses all four cyano moieties to bridge four different Cu(II) centers, creating a 1-D chain.  相似文献   

12.
Two stepwise approaches to preparing large unsymmetrical macrocycles incorporating diethylenetriamine lateral units are described: the first utilises protecting group chemistry, whereas the second exploits irreversible amide bond formation in the presence of an excess of the amine. In the first approach condensation of two equivalents of N-acetyldiethylenetriamine 1 with 2,6-diformyl-4-methylphenol, followed by a sodium borohydride reduction of the newly formed imine bonds and acidic removal of the protecting groups, yields a phenol-containing "two-armed" precursor as an HCl salt 2. Using the second approach the new pyridine-containing "two-armed" precursor , is prepared from 2,6-dimethylpyridinedicarboxylate and an excess of diethylenetriamine. These two "two-armed" di-primary amine precursors, 2 (after reaction with KOH) and 3, can be condensed with the dicarbonyl head units of choice. The lead templated condensation of 2 with 2,6-diacetylpyridine results in the formation of the macrocyclic dilead(II) complex {[Pb(II)(2)(L1)(Cl)](ClO(4))(2)}(infinity) 4. Transmetallation of 4 with three equivalents of copper(II) perchlorate produces Cu(II)(3)(L1)(OH)(ClO(4))(4) 5. Condensation of 3 with 2,6-diacetylpyridine or 2,6-diformylpyridine in the presence of barium(ii) ions results in the macrocyclic complexes [Ba(II)(H(2)L2)](ClO(4))(2) 6 and [Ba(II)(H(2)L3)](ClO(4))(2) 7, respectively. Copper(II) acetate templates the formation of the crystallographically characterised unsymmetrical macrocyclic complex [Cu(II)(3)(L4)(OH)(NCS)(2)].EtOH, 8.EtOH, from 3, 2,6-diformyl-4-methylphenol and NaNCS.  相似文献   

13.
The first catalytic asymmetric direct Mannich reaction of malonates and beta-keto esters has been developed. Malonates react with an activated N-tosyl-alpha-imino ester catalyzed by chiral tert-butyl-bisoxazoline/Cu(OTf)(2) to give the Mannich adducts in high yields and with up to 96% ee. These reactions create a chiral quaternary carbon center and it is demonstrated that this new direct Mannich reactions provides for example a new synthetic procedure for the formation of optically active beta-carboxylic ester alpha-amino acid derivatives. A series of different beta-keto esters with various ester substituents has been screened as substrates for the catalytic asymmetric direct Mannich reaction and it was found that the best results in terms of yield, diastereo- and enantioselectivity were obtained when tert-butyl esters of beta-keto esters were used as the substrate. The reaction of different beta-keto tert-butyl esters with the N-tosyl-alpha-imino ester gave the Mannich adducts in high yields, diastereo- and enantioselectivities (up to 95% ee) in the presence of chiral tert-butyl-bisoxazoline/Cu(OTf)(2) as the catalyst. To expand the synthetic utility of this direct Mannich reaction a diastereoselective decarboxylation reaction was developed for the Mannich adducts leading to a new synthetic approach to attractive optically active beta-keto alpha-amino acid derivatives. Based on the stereochemical outcome of the reactions, various approaches of the N-tosyl-alpha-imino ester to the chiral bisoxazoline/Cu(II)-substrate intermediate are discussed.  相似文献   

14.
A library of novel dipeptide-analogue ligands based on the combination of tert-butoxycarbonyl(N-Boc)-protected alpha-amino acids and chiral vicinal amino alcohols were prepared. These highly modular ligands were combined with [[RuCl(2)(p-cymene)](2)] and the resulting metal complexes were screened as catalysts for the enantioselective reduction of acetophenone under transfer hydrogenation conditions using 2-propanol as the hydrogen donor. Excellent enantioselectivity of 1-phenylethanol (up to 98 % ee) was achieved with several of the novel catalysts. Although most of the ligands contained two stereocenters, it was demonstrated that the absolute configuration of the product alcohol was determined by the configuration of the amino acid part of the ligand. Employing ligands based on L-amino acids generated S-configured products, and catalysts based on D-amino acids favored the formation of the R-configured alcohol. The combination N-Boc-L-alanine and (R)-phenylglycinol (Boc-L-Ab) or its enantiomer (N-Boc-D-alanine and (S)-phenylglycinol, Boc-D-Aa) proved to be the best ligands for the reduction process. Transfer hydrogenation of a number of aryl alkyl ketones were evaluated and excellent enantioselectivity, up to 96 % ee, was obtained.  相似文献   

15.
The kinetic method has been extended to enantiomeric excess (ee) determinations on amino acids present in mixtures. Singly charged trimeric clusters [Cu(II)(ref*)(2)(A(m)) - H](+) are readily generated by electrospraying solutions containing Cu(II), a chiral reference ligand (ref*), and the amino acids (analytes A(m), m = 1-3). A trimeric cluster ion for each amino acid is individually mass-selected and then collisionally activated to cause dissociation by competitive loss of either the reference ligand or the analyte. For each analyte in the mixture, as shown from separate experiments, the logarithm of the ratio of the fragment abundances for the complex containing one enantiomer of this analyte expressed relative to that for the fragments of the corresponding complex containing the other enantiomer is linearly related to the enantiomeric composition of the amino acid. Formation and dissociation of each trimeric complex ion are shown to occur independently of the presence of other analytes. Chiral selectivity appears to be an intrinsic property and the chiral selectivity R(chiral(m)) measured from the mixture of analytes is equal to R(chiral) measured for the pure analyte. The sensitive nature of the methodology and the linear relationship between the logarithm of the fragment ion abundance ratio and the optical purity, characteristic of the kinetic method, allow the determination of chiral impurities of less than 2% ee in individual compounds present in mixtures by simply recording the ratios of fragment ion abundances in a tandem mass spectrum.  相似文献   

16.
The selective two-electron reduction of O(2) by one-electron reductants such as decamethylferrocene (Fc*) and octamethylferrocene (Me(8)Fc) is efficiently catalyzed by a binuclear Cu(II) complex [Cu(II)(2)(LO)(OH)](2+) (D1) {LO is a binucleating ligand with copper-bridging phenolate moiety} in the presence of trifluoroacetic acid (HOTF) in acetone. The protonation of the hydroxide group of [Cu(II)(2)(LO)(OH)](2+) with HOTF to produce [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF) makes it possible for this to be reduced by 2 equiv of Fc* via a two-step electron-transfer sequence. Reactions of the fully reduced complex [Cu(I)(2)(LO)](+) (D3) with O(2) in the presence of HOTF led to the low-temperature detection of the absorption spectra due to the peroxo complex [Cu(II)(2)(LO)(OO)] (D) and the protonated hydroperoxo complex [Cu(II)(2)(LO)(OOH)](2+) (D4). No further Fc* reduction of D4 occurs, and it is instead further protonated by HOTF to yield H(2)O(2) accompanied by regeneration of [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF), thus completing the catalytic cycle for the two-electron reduction of O(2) by Fc*. Kinetic studies on the formation of Fc*(+) under catalytic conditions as well as for separate examination of the electron transfer from Fc* to D1-OTF reveal there are two important reaction pathways operating. One is a rate-determining second reduction of D1-OTF, thus electron transfer from Fc* to a mixed-valent intermediate [Cu(II)Cu(I)(LO)](2+) (D2), which leads to [Cu(I)(2)(LO)](+) that is coupled with O(2) binding to produce [Cu(II)(2)(LO)(OO)](+) (D). The other involves direct reaction of O(2) with the mixed-valent compound D2 followed by rapid Fc* reduction of a putative superoxo-dicopper(II) species thus formed, producing D.  相似文献   

17.
The preparation, composition and structure of copper hexacyanoferrates have been investigated. Three methods were used: precipitation, local growth in an aqueous solution, and growth in a gel. Four compounds were obtained, either in powdered form or as single crystals: Cu(II)(2)Fe(II)(CN)(6) . xH(2)O, Cu(II)(3)[Fe(III)(CN)(6)](2) . xH(2)O, Na(2)Cu(II)Fe(II)(CN)(6) . 10H(2)O and K(2)Cu(II)Fe(II)(CN)(6). Powders of Cu(II)(2)Fe(II)(CN)(6) . xH(2)O and Cu(II)(3)[Fe(III) (CN)(6)](2) . xH(2)O are easily prepared by precipitation and can also be obtained by local growth. They crystallise generally with cubic symmetry, in space group Fm3m, and are structurally disordered. The mixed copper hexacyanoferrates of general formulae M(1)(2)Cu(II)Fe(II)(CN)(6) or M(I)Cu(II)Fe(III)(CN)(6) (here M(I) is Na, K) were not obtained by precipitation. The appropriate method was local growth for the preparation of powders of K(2)Cu(II)Fe(II)(CN)(6). Single crystals of Na(2)Cu(II)Fe(II)(CN)(6) were obtained by growth in a gel, and their study using single crystal X-ray diffraction revealed a new monoclinic structure.  相似文献   

18.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

19.
We report an electrospray ionization mass spectrometric study of Cu(I) and Cu(II) bipyridine complexes employed in atom transfer radical polymerization. Mass spectra of Cu(I)Br complexed with 2 equiv. of 4,4'-di(5-nonyl)-2,2'-bipyridine (dNbpy) in toluene, methyl acrylate or styrene showed the presence of [Cu(I)(dNbpy)(2)](+) cation and [Cu(I)Br(2)](-) anion. For the Cu(II)Br(2)/2dNbpy system, [Cu(II)(dNbpy)(2)Br](+), [Cu(II)(dNbpy)Br](+), [Cu(I)Br(2)](-), [Cu(II)Br(3)](-) and [Cu(II)(dNbpy)Br(3)](-) species were observed. In addition, for mixed Cu(I)Br/2dNbpy and Cu(II)Br(2)/2dNbpy systems, the negative ion mode showed only the presence of [Cu(I)Br(2)](-) anions, which are potentially formed through halogen exchange between [Cu(II)Br(3)](-) and [Cu(I)(dNbpy)(2)](+). Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号