首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of quantum chemical calculations of the potential profile in the LaF3 crystal lattice in the range of superionic phase transition are presented for clusters containing 24 to 1200 ions. It is found that the values of formation energy E a of vacancy-interstitial fluoride ion defects and potential barriers E d hindering the movement of fluoride ions and determining the efficiency of charge transport in the lattice grow monotonously from the minimum values E a = 0.12 eV and E d = 0.22 eV for a 24-ion cluster to the maximum E a = 0.16 eV and E d = 0.26 eV for clusters of 576 and 1200 ions. It is shown that the values of E a and E d obtained for the dielectric phase (T < T c) are several times the values of E a and E d for the superionic state (TT c) of LaF3. The values of E a and E d obtained by quantum chemical calculations from clusters of 576 and 1200 ions agree well with energies E a and E d obtained from the analysis of the data of the Raman and quasielastic light scattering.  相似文献   

2.
The effect of various experimental parameters and the presence of chemical modifiers on the atomization kinetics of gold have been investigated. The dissipation process of the atomic vapour is also studied and the diffusion parameters calculated in the absence and in the presence of chemical modifiers. The chemical modifiers studied are ascorbic acid, rhenium, palladium and rhodium. In the absence of chemical modifiers, a two-precursor atomization mechanism is observed in distinctive different temperature regions. When a long pyrolysis step and low masses of gold are employed, an atomization from dispersed particles with low Ea value is observed in the low temperature region (LT region). At high masses of gold, a fractional order atomization from gold agglomerates with high, mass-dependent, Ea values, approaching the heat of vaporization, ΔHvap, is observed in the high temperature region (HT region). In the presence of ascorbic acid, a high Ea value is obtained in the LT region, suggesting a fast atomization from surface particles at the active sites produced by the pyrolysis of ascorbic acid and a low Ea value is obtained in the HT region, with first-order kinetics, which indicates a desorption process through the micropores of the amorphous carbon residue of ascorbic acid. In the presence of 5 μg Re, a two-precursor mechanism is also found, with a high Ea value in the LT region, suggesting vaporization from small clusters, and a low Ea value in the HT region with a first-order kinetics, indicating vaporization of disperse particles from the graphite surface. In the presence of 0.1–1 μg Pd, a two-precursor mechanism is also observed. The first process, in the LT region, has a low Ea value, which indicates vaporization of disperse particles from the available free active sites of the graphite surface. The second process, in the HT region, begins at the appearance temperature of Pd and shows a high Ea value and first-order kinetics, which means that release of gold atoms occurs only after the vaporization of Pd has begun. In the presence of Rh, a mass-dependent Ea value is found in the LT region, suggesting atomization from gold clusters. However, in the HT region, the generation of atomic vapour of Au is kinetically controlled by the release of the Rh modifier.  相似文献   

3.
The possibility of estimating the activation energy E a of reorientation of symmetrical atomic groups containing quadrupole nuclei from nuclear quadrupole resonance data was studied. The estimates can be obtained using simple semiempirical equations relating the E a value to the characteristic temperature selected in some general way for different compounds; the measured NQR parameters are determined at this temperature by reorientation motion. The temperature at which the spin-lattice relaxation time of a moving quadrupole nucleus is 1 ms and the fade out temperature of the NQR signal for the group that experiences reorientation (fading is related to the maximum measurable width of resonance lines) were tested as characteristic temperatures. The 35Cl NQR data on 70 reorienting CCl3 groups were analyzed to obtain quantitative relations of the E a = CT char type that described the reorientations of these groups in solids. Some corollaries to the equations obtained are discussed.  相似文献   

4.
The dehydration kinetics of equilibrium swollen poly (acrylic acid) hydrogel is analyzed by both model-fitting and model-free approaches. The conventional model-fitting approach assuming a fixed mechanism throughout the reaction and extract a single values of the apparent activation energy (Ea) and pre-exponential factor (A) and was found to be too simplistic. The values of Arrhenius parameters obtained in such a way are in fact an average that does not reflect changes in the reaction mechanism and kinetics with the extent of conversion. The model-free approach allows for a change of mechanism and activation energy, Ea, during the course of a reaction and is therefore more realistic. The complexity of the dehydration of poly (acrylic acid) hydrogel is illustrated by the dependence of Ea and A on the extent of conversion, α (0.05 ≤ α ≤ 0.98). Under non-isothermal conditions, Ea decreases with α for 0 ≤ α ≤ 0.50, followed by an approximately constant value of Ea during further dehydration. For 0 ≤ α ≤ 0.50, dehydration is complex, which probably involving a combination of several processes. In the constant-Ea region, non-isothermal dehydration follows the three-dimensional phase boundary model (R3). The complex hydrogen-bond pattern in poly (acrylic acid) hydrogel is probably responsible for the observed dehydration behavior. An existence of compensation effect is accepted and explanation of compensation effect appearance during the hydrogel dehydration is suggested.  相似文献   

5.
We have calculated total electronic energies (E) and Gibbs energies (G) of a large number of acids and their anions in water, dimethylsulfoxide, and dimethylformamide using the hybrid B3LYP functional DFT method in the 6-31++G(d,p) basis set, taking into account the solvent effect by the conductor-like polarizable continuum model method. A linear correlation has been found between the experimental values of acid dissociation constants (pKa) of different nature and the difference between anion and acid E values, and between pKa and the difference between anion and acid G values. The obtained correlations allowed us to evaluate the pKa values of both inorganic and organic acids. Such an evaluation is of special importance for nonaqueous solvents as it is quite problematic to determine these dissociation constants.  相似文献   

6.
We have determined the activation energies (Ea) of yellowing and gloss loss for a large number of engineering thermoplastics and blends under accelerated weathering conditions. The Ea often depend on the property measured and exposure conditions, although they vary over a fairly small range. Under the CIRA/sodalime-filtered xenon arc conditions most likely to be representative of outdoor exposure, the Ea for gloss loss was ≤5 kcal/mol for all samples tested. The Ea for yellowing was also ≤5 kcal/mol except for SAN and ABS. Evidently the color bodies formed from photo-oxidation of SAN are more sensitive to temperature. A reaction with an Ea of 5 kcal/mol will increase its rate by about 33% for each 10 °C increase in temperature near room temperature. Temperature is an important, but not overwhelming, variable in the weathering of most engineering thermoplastics.  相似文献   

7.
The activation energy,E a taken from the thermal decomposition of KMnO4 and AgMnO4 was compared with the energy of the longest wavelength O→Mn ‘charge transfer’ (CT) transition. TheE a and CT correlation was found in these systems. However, such relationship can be valid when in the dissociation process the electron transfer is assumed to be the rate determining step. Thus, the permanganates as well as the previously studied chromates, are positive examples showing that in some cases, the energies derived from both methods can be comparable.  相似文献   

8.
The ability to mediate the kinetic properties and dissociation activation energies (Ea) of bound guests by controlling the characteristics of “supramolecular lids” in host–guest molecular systems is essential for both their design and performance. While the synthesis of such systems is well advanced, the experimental quantification of their kinetic parameters, particularly in systems experiencing fast association and dissociation dynamics, has been very difficult or impossible with the established methods at hand. Here, we demonstrate the utility of the NMR-based guest exchange saturation transfer (GEST) approach for quantifying the dissociation exchange rates (kout) and activation energy (Ea,out) in host–guest systems featuring fast dissociation dynamics. Our assessment of the effect of different monovalent cations on the extracted Ea,out in cucurbit[7]uril:guest systems with very fast kout highlights their role as “supramolecular lids” in mediating a guest''s dissociation Ea. We envision that GEST could be further extended to study kinetic parameters in other supramolecular systems characterized by fast kinetic properties and to design novel switchable host–guest assemblies.

GEST-NMR is utilized for quantifying the dissociation activation energy (Ea,out) in host-guest systems featuring fast dissociation dynamics.  相似文献   

9.
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride, was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (Hg lamp, 96 h) and analyzed by thermogravimetry (TG) in inert and oxidative atmosphere. Typical multi-step decomposition profiles were obtained. The apparent activation energy (Ea) of the thermal degradation of the samples was computed by the Vyazovkin method. The KLD degradation presented only small intervals of decomposition degree with constant Ea values. PVA and blends showed intervals of up to 50% in decomposition degree with nearly constant Ea, and smaller intervals in which Ea varies drastically. The influences of samples irradiation and of surrounding gas in TG analysis on Ea are also shown.  相似文献   

10.
The lifetime of polycarbonate (PC) coated with silicone hardcoats containing UV absorber is shorter at elevated temperatures. The activation energy (Ea) for delamination was found to be 18 ± 2 kJ/mol (4.3 ± 0.5 kcal/mol) at the 95% confidence level in this study. This Ea is the consequence of the sensitivity of the substrate and the UV absorber to temperature. The Ea for PC photodegradation was previously found to be 17-21 kJ/mol (4-5 kcal/mol). The Ea for loss of absorbance in the second-generation silicone hardcoat was found to be 28.5 ± 5.4 kJ/mol (6.8 ± 1.3 kcal/mol) at the 95% confidence level. Results are consistent with experimental findings when these activation energies are used in published predictive models. Since the Ea for coating delamination depends on the Ea of UV absorber loss, coating systems different from the one in this study will need to be investigated separately.  相似文献   

11.
The kinetics and mechanism of cure reaction of DGEBA using a chelate of Ni(II) with diethylenetriamine (dien), Ni(dien)2I2, as a curing agent was studied by DSC. TG curve of the complex curing agent showed mass loss in two region of temperature: 200–320 and 450–550 °C. Dynamic DSC measurements showed only one exothermic peak with a maximum about 250 °C depending on the heating rate. According to the methods of KAS and Ozawa–Flynn–Wall the values of E a were 92.5 and 96.2 kJ/mol, respectively. The isoconversional kinetic analysis in whole range of conversion, α = 0.02–0.95, showed small changes in the E a values in the region of α = 0.04–0.6 and most likely represent some average values (E a = 110 kJ/mol) between the values of E a of non-autocatalyzed and autocatalyzed reactions. Using the sole dependence of E a on α, the time required to reach fully cured materials under isothermal conditions were also predicted and compared with the experimental results.  相似文献   

12.
The non-isothermal method for estimating the kinetic parameters of crystallization for the phase change memory (PCM) materials was discussed. This method was applied to the perspective PCM material of Ge2Sb2Te5 with different Bi contents (0, 0.5, 1, 3 mass%) for defining the kinetic triplet. Rutherford backscattering spectroscopy and X-ray diffraction were used to carry out elemental and phase analysis of the deposited films. Differential scanning calorimetry at eight different heating rates was used to investigate kinetics of thermally induced transformations in materials. Dependences of activation energies of crystallization (E a) on the degree of conversion were estimated by model-free Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose, Tang and Starink methods. The obtained values of E a were quite close for all of these methods. The reaction models of the phase transitions were derived with using of the model-fitting Coats–Redfern method. In order to find pre-exponential factor A at progressive conversion values, we used values of E a already estimated by the model-free isoconversional method. It was established that the crystallization processes in thin films investigated are most likely describes by the second and third-order reactions models. Obtained kinetic triplet allowed predicting transition and storage times of the PCM cells. It was found that thin films of Ge2Sb2Te5 + 0.5 mass% Bi composition can provide the switching time of the phase change memory cell less than 1 ns. At the same time, at room temperature this material has a maximum storage time among the studied compositions.  相似文献   

13.
The influence of transfer processes and activation energies on the electrical conductivity and nuclear magnetic relaxation rate of a reference aqueous solution of KCl and sea water at 15°C was studied. The closest agreement between the calculated and experimental conductivity values was obtained with the coordination numbers n S of the K+ and Cl? ions equal to 4 and 1, respectively, and the activation energy close to E a for vapor (3.38 kcal/mol). According to nuclear magnetic relaxation rate, viscosity, diffusion, and self-diffusion measurements, the n S values of these ions are 8 and 4, respectively, and E a ≈ 4.6 kcal/mol. The main reasons for the difference in the n S and E a values for transfer processes in aqueous solutions of strong electrolytes are discussed. The temperature and concentration dependences of NMR relaxation rates and the other parameters related to molecular mobility are best described by a function which is the sum of exponential functions whose number depends on solution concentration.  相似文献   

14.
Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C0, where the change in characteristic mass, m0, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as Emax, maximum enhancement factor; Et, enhancement for 1.0 minute sampling and Ev, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.  相似文献   

15.
Morphological and thermodynamic transitions in drugs as well as their amorphous and crystalline content in the solid state have been distinguished by thermal analytical techniques, which include dielectric analysis (DEA), differential scanning calorimetry (DSC), and macro-photomicrography. These techniques were used successfully to establish a structure versus property relationship with the United States Pharmacopeia standard set of active pharmaceutical ingredient (API) drugs. A distinguishing method is the DSC determination of the amorphous and crystalline content which is based on the fusion properties of the specific drug and its recrystallization. The DSC technique to determine the crystalline and amorphous content is based on a series of heat and cool cycles to evaluate the drugs ability to recrystallize. To enhance the amorphous portion, the API is heated above its melting temperature and cooled with liquid nitrogen to ?120 °C (153 K). Alternatively a sample is program heated and cooled by DSC at a rate of 10 °C min?1. DEA measures the crystalline solid and amorphous liquid API electrical ionic conductivity. The DEA ionic conductivity is repeatable and differentiates the solid crystalline drug with a low conductivity level (10?2 pS cm?1) and a high conductivity level associated with the amorphous liquid (10pS cm?1). The DSC sets the analytical transition temperature range from melting to recrystallization. However, analysis of the DEA ionic conductivity cycle establishes the quantitative amorphous and crystalline content in the solid state at frequencies of 0.10–1.00 Hz and to greater than 30 °C below the melting transition as the peak melting temperature. This describes the “activation energy method.” An Arrhenius plot, log ionic conductivity versus reciprocal temperature (K?1), of the pre-melt DEA transition yields frequency dependent activation energy (E a, J mol?1) for the complex charging in the solid state. The amorphous content is inversely proportional to the E a where the E a for the crystalline form is higher and lower for the amorphous form with a standard deviation of ±2%. There was a good agreement between the DSC crystalline melting, recrystallization, and the solid state DEA conductivity method with relevant microscopic evaluation. An alternate technique to determine amorphous and crystalline content has been established for the drugs of interest based on an obvious amorphous and crystalline state identified by macro-photomicrography and compared to the conductivity variations. This second “empirical method” correlates well with the “activation energy” method.  相似文献   

16.
Effects of high nano-SiO2 loading (up to 30 mass%) on polybenzoxazine (PBA-a) thermal degradation kinetics have been investigated using nonisothermal thermogravimetric analysis (TG). The DTG curves revealed three stages of thermal decomposition process in the neat PBA-a, while the first peak at low temperature was absent in its nanocomposites. As a consequence, the maximum degradation temperature of the nanocomposites shifted significantly to higher temperature as a function of the nano-SiO2 contents. Moreover, the degradation rate for every degradation stage was found to decrease with the increasing amount of the nano-SiO2. From the kinetics analysis, dependence of activation energy (E a) of the nanocomposites on conversion (α) suggests a complex reaction with the participation of at least two different mechanisms. From Coats–Redfern and integral master plot methods, the average E a and pre-exponential factor (A) of the nanocomposites showed systematically higher value than that of the PBA-a, likely from the shielding effect of the nanoparticles. The main degradation mechanism of the PBA-a was determined to be a random nucleation type with one nucleus on the individual particle (F1 model), while that of the PBA-a nanocomposite was the best described by diffusion-controlled reaction (D3 model).  相似文献   

17.
The structures of recently discovered new high-temperature modifications of cobalt molybdate, a′-and a″-CoMoO4, were determined. a′-and a″-CoMoO4 appear after the phase a-CoMoO4 is heated above the temperature range 700–1000°C. They seem to be the disordered modifications of a-CoMoO4 with metal atoms distributed at random in an a-CoMoO4 oxygen network.The F(hkl) values, calculated for variously disordered a-CoMoO4 structure, were compared with the observed intensities of diffraction lines changing in the course of aa′ and aa″ transitions. It was concluded that a″-CoMoO44 has a completely disordered structure with random distribution of both Co and Mo atoms in oxygen interatomic voids. The a′-CoMoO4 is a partly disordered modification, with random distribution of some cations only.The temperature and the kind of order-disorder transition depend on the method of preparation of a-CoMoO4 samples.The disordered modifications of cobalt molybdate may be supercooled—even to room temperature—before it transforms rapidly into low-temperature b-CoMoO4 form.  相似文献   

18.
The kinetics of thermal decomposition of NH4CuPO4·H2O was studied using isoconversional calculation procedure. The iterative isoconversional procedure was applied to estimate the apparent activation energy E a; the values of apparent activation energies associated with the first stage (dehydration), the second stage (deamination), and the third stage(condensation) for the thermal decomposition of NH4CuPO4·H2O were determined to be 117.7 ± 7.7, 167.9 ± 8.4, and 217.6 ± 45.5 kJ mol?1, respectively, which demonstrate that the third stage is a kinetically complex process, and the first and second stages are single-step kinetic processes and can be described by a unique kinetic triplet [E a, A, g(α)]. A new modified method of the multiple rate iso-temperature was used to define the most probable mechanism g(α) of the two stages; and reliability of the used method for the determination of the kinetic mechanism were tested by the comparison between experimental plot and model results for every heating rate. The results show that the mechanism functions of the two stages are reliable. The pre-exponential factor A of the two stages was obtained on the basis of E a and g(α). Besides, the thermodynamic parameters (ΔS , ΔH , and ΔG ) of the two stages were also calculated.  相似文献   

19.
A diphenylanthracene-based diamidine (1a) fluorescent probe for the detection of dicarboxylic acids has been designed and synthesized, which has an extended π-conjugation rather than a simple anthracene ring, in order to observe highly different fluorescence wavelengths after complex formation with dicarboxylic acids. The fluorescence spectra of the mixed solution of the diamidine 1a and carboxylic acids showed two different fluorescence bands, which corresponded to the complex formation (amidinium-carboxylate formation, λem?=?450?nm, light blue color) and dissociated amidinium formation (λem?=?510?nm as a broad band, green color). The complexed and dissociated states were confirmed by DOSY NMR and TD-DFT calculations. These different fluorescence wavelengths may come from the differences in the dihedral angles between the phenyl rings at the 1,8-position and anthracene ring (difference in π-conjugation) of 1a under complex formation and dissociated amidinium formation. The proposed mechanism for the observation of the different fluorescence wavelengths (complex formation and amidinium formation) was also confirmed by the fluorescence study of diamidine 1b which causes restricted rotation of the phenyl rings by substitution of the steric methyl groups, and observed the same fluorescence spectra for the complex formation and amidinium formation (400, 420, 450?nm as a vibrational structure of anthracene ring). These fluorescence characteristics of the diamidine 1a are also applicable for the detection of α,ω?dicarboxylic acids.  相似文献   

20.
A perovskite-type BaCu1/3Nb2/3O3 was prepared by high temperature reaction using BaCO3, CuO and Nb2O5. The X-ray powder diffraction pattern of this compound was indexed with the tetragonal cell with the lattice parameters of a=4.0464(4) and c=4.1807(4) Å (c/a=1.033). This compound had the tetragonal perovskite-type structure in which the B site was occupied statistically by Nb and Cu atoms. From high temperature X-ray powder diffraction patterns this compound had a phase transition from the tetragonal to cubic symmetry in the temperature range of 500-600 °C. The P-E and S-E hysteresis loops occurred at room temperature and the apparent maximum in the temperature dependence of the dielectric constant was observed at 520 °C. The temperature dependence of the inverse of magnetic susceptibility exhibited paramagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号