首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— Mature wheat leaves excited by 1-min illumination at a low temperature of -60° C showed five thermoluminescence bands at -45, -10, +25, +40 and +55° C (denoted as Zu, A, B1 B2 and C bands, respectively). The development of these bands during greening of etiolated wheat leaves under continuous and intermittent illumination was investigated, and the following results were obtained. (1) Etiolated leaves showed only the C band. When these leaves were greened under continuous light, the B1 and B2 bands appeared at 3 h and the Zu band appeared at 10 h. The B1 and B2 bands were intensified during prolonged greening under continuous illumination to be the strong bands observed for mature leaves. The A band and the group of B1 and B2 bands were alternative: Similar experiments by excitation of thermoluminescence at -20° C showed the development of the A band instead of these B1 and B1 bands. (2) When the etiolated leaves were greened under intermittent illumination (1-ms light + 5-min dark), the Zu band first appeared after 5 h of illumination (60 flashes) and was gradually intensified during further illumination with 340 flashes but, interestingly, neither the B1 nor the B2 band appeared even after 24–28 h of illumination with 280–340 flashes. (3) On exposure of such leaves greened under intermittent illumination to continuous light, the B1 and B2 bands were rapidly developed. The appearance of these bands was accompanied by the generation of the Hill activity (DCIP photoreduction with water as electron donor). (4) These results were discussed in relation to the previous study on photoactivation of the latent water-splitting system accumulated in the leaves greened under intermittent illumination. It was deduced that the structure responsible for the A band or the group of B1 and B2 bands is involved in the evolution of oxygen in chloroplasts, and probably involves cations of the Mn2+ catalyst generated by the action of light.  相似文献   

2.
Abstract— The photosynthetic activity of white light-grown Acetabularia mediterranea Lamouroux (= A. acetabulum (L.) Silva) decreases under continuous red light to less than 20% within 3 weeks. Subsequent blue light reactivates photosynthesis within a relatively short period of 3 days. In a former publication (Wennicke and Schmid, Plant Physiol. 84 ,1252–1256, 1987) we have shown that the regulated rate limiting step, which is an immediate light driven reaction, is part of photosystem II (PS II). The following biophysical properties of PS II were analyzed in thylakoids isolated from algae grown 3 weeks under either blue or red light with or without subsequent 3 days of blue light illumination: (a) fluorescence induction in the short time domain dominated by QA reduction, (b) the slow fluorescence decline reflecting pheophytin photoaccumulation, (c) absorption changes at 320 and 830 nm under repetitive flash excitation as indicator for the turnover of QA and P680, respectively, (d) oscillation pattern of the oxygen yield by a flash train in dark adapted samples and (e) the binding capacity for atrazine. None of these PS II functions were severely affected, but a minor impairment of20–30% was observed in the thylakoids from algae grown for 3 weeks in red irradiation. The changes do not fully account for the drastic reduction of the electron transport through PS II which was 80% after red light treatment. Therefore, the regulated rate-limiting step appears to not be mainly located in the PS II core complex itself. It seems likely that the regulation process predominantly comprises the antenna system.  相似文献   

3.
The photoinduced electrical events at energy-conserving chloroplast membranes can be studied in whole plastids using suction electrodes. In chloroplasts of Peperomia metallica the kinetic profile of photocurrent contains a minor outward component that occurs prior to and differs in polarity from the main component. The origin of this outward current was analyzed using single-turnover flashes in combination with prolonged light exposures and differential physicochemical treatments of tip-located (internal) and the exposed parts of a chloroplast. The outward current signal was higher after 10- to 20-s preillumination and gradually reduced in darkness. The relative amplitude of the outward peak current was enhanced when photosystem II (PS II) was excited by flashes given in the presence of far-red background light (lambda = 712 nm). The outward current was small or absent under conditions promoting activity of photosystem I (cyclic electron transport supported by artificial redox mediators in the presence of diuron) and was particularly high in the presence of PS II electron acceptors (e.g., p-phenylenediamine). This indicates the predominant association of the outward current with activity of PS II. The external application of diuron strongly inhibited the inward current, giving rise to a temporal increase in the outward current. On the contrary, when diuron was added into the suction pipette, the outward current was inhibited soon after sealing. The data suggest that the outward current originated in the tip-located portions of the thylakoid membrane that have orientation opposite to the exposed part of 'whole thylakoid'. These tip-located membrane portions are least accessible for inhibitors added into the outer medium and are highly sensitive to inhibitors (diuron), ionophores (gramicidin D), and detergents (Triton X-100) added into the pipette. Differential involvement of two photosystems in generation of the outward current may be caused by uneven structural distribution of photosystems I and II between appressed (granal) and nonappressed (stromal) thylakoids and by different recording configurations for these thylakoids.  相似文献   

4.
Wheat seedlings, grown for 7 days in the light, were allowed to senesce in the light or dark, and the change in the photosystem II (PS II) photochemistry of chloroplasts isolated from the primary leaves of these seedlings was investigated. The decrease in oxygen evolution and the fast fluorescence results indicated that the impairment of PS II in the leaves of seedlings senescing in the light was different from that in the leaves of seedlings senescing in the dark. Thermoluminescence studies showed a structural modification in the QB protein of chloroplasts isolated from leaves senescing in the light and an alteration in the S state transition of chloroplasts isolated from leaves senescing in the dark.  相似文献   

5.
Abstract— The development of plastids in the palisade parenchyma cells of the cotyledons of mustard seedlings ( Sinapis alba L.) was studied by electron microscopy. In darkness the etioplasts undergo a sequence of morphogenic changes previously recognized in principle in bean and barley leaves, as summarized by Rosinski, J. and W. G. Rosen (1972) Quart. Rev. Biol. 47 , 160–190. From 12 to 36 h after sowing, an increase in the percentage of etioplast profiles with paracrystalline prolamellar bodies can be observed. Thereafter, the degree of organization and size of the prolamellar bodies decrease. 60 h after sowing, the etioplasts show only remnants of prolamellar bodies with irregularly spaced tubules. Continuous far-red light, which is considered to operate via phytochrome, counteracts the decay of organization of the prolamellar body and strongly increases the size of the plastids. The effect of continuous far-red light (onset of light 36 h after sowing) can be substituted by 12 h of far-red light given between 36 and 48 h after sowing. It is shown with red and far-red light pulses that the morphogenic effect of long-term far-red light on plastid size and appearance of the prolamellar body is exclusively due to phytochrome (Pfr). Changes by light in the amounts of protochlorophyll(ide) or chlorophyll(ide) do not affect these results. The action of Pfr on the structure of the prolamellar body is a relatively fast process, occurring within 3 h. Formation of thylakoids does not seem to be under phytochrome control. Rather, this response seems to be related to the protochlorophyll(ide)→ chlorophyll(ide) a transformation.  相似文献   

6.
Abstract— The phototactic response of cells of Cryptomonas sp. to stimulation with continuous or intermittent lateral light was determined by an individual cell method using photomicrography and videomicrography. The cells showed positive phototaxis under the conditions studied. The phototactic orientation of individual cells was induced most effectively by irradiation with light of 570 nm; blue light was less effective, and no orientation was found in red light. An intermittent stimulus regime with a long dark interval (250 ms) elicited a weaker phototactic orientation than did a regime with a short dark interval (63 ms) irrespective of the duration of light pulses (16, 250 and 1000 ms). The swimming rate was ca. 240 ums -1 and the rotation period ca. 450 ms in the dark, neither of which was greatly affected by stimulation with continuous or intermittent light. Neither step-up nor step-down photophobic responses were observed at the time of onset or removal of the light stimulus under the experimental conditions. The swimming direction of individual cells became gradually oriented toward the light source. Phototactic response was detectable within 4 s after the onset of light stimulation, reaching a saturation level after more than 30 s.  相似文献   

7.
The accumulation of phytochrome in the dark was measured for Avena sativa seedlings after a white light pretreatment and for Sorghum vulgare seedlings after continuous red or far-red light treatments, using the herbicide Norflurazon to prevent greening under continuous irradiation. In both cases the accumulation of phytochrome depends on the state of the phytochrome at the light-dark transition: high Pfr levels (red light pulse) led to a slower rate of phytochrome accumulation than lower Pfr levels (long wavelength far-red (RG 9) light pulse). Poly-(A+)-RNA was isolated fromA. sativa seedlings grown for 48 h in darkness + 24 h WL + light pulse (5 min) (red, RG 9 light, red followed by RG 9 light or RG 9 followed by red light pulse) + 19 h darkness. The poly-(A+)-RNA was translated in a rabbit reticulocyte lysate system and the translation products were immunoprecipitated by specific anti-phytochrome antibodies. It was demonstrated that the activity of mRNA coding for phytochrome was under phytochrome control.  相似文献   

8.
Abstract— Photoreactivating enzyme (PRE) activity was measured in hypocotyls of Phaseolus vulgaris L. seedlings using a radioimmunoassay for thymine dimers. In dark-grown seedlings a five-fold increase in PRE activity was observed after 6 h of irradiation with blue or far-red light. Short time irradiations with red light were also effective. Reversibility of this red-light-effect by a subsequent short term irradiation with far-red light and also the high effectiveness of continuous far-red light indicate that PRE activity is under phytochrome control. This observation points to PRE induction via gene activation.  相似文献   

9.
Abstract— Four types of triggered luminescence of isolated lettuce chloroplast (HCl-induced, methanol-induced, sodium benzoate-induced and T-jump-induced) were examined after preillumination by a series (from 1 to 10) of short flashes. Oscillations were observed in the luminescence peaks, with a period of four flashes. These oscillations had maxima after the second and the sixth flash, similar to those of delayed light emission. The maxima were shifted forward two flashes by 50 μ M hydroxylamine, as in oxygen evolution, and were abolished by 5 μ M DCMU, as for delayed light. These results may show that the mechanism of triggered luminescence is influenced directly by the oxidation states ( S 1) on the donor side of photo-system II.  相似文献   

10.
Abstract— The possible association of photodynamic sensitization with photoinhibition damage to the photosystem II complex (PS II) has been investigated using isolated intact thylakoids from pea leaves. For this study singlet oxygen (1O2), photoproduced by endogenous chromophores that are independent of the function of PS II, was assumed to be the major reactive intermediate involved in the photoinhibition process. When thylakoid samples preincubated with rose bengal were subjected to exposure to relatively weak green light (500–600 nm) under aerobic conditions, PS II was severely damaged. The pattern of the rose bengal-sensitized inhibition of PS II was similar to that of high light-induced damage to PS II: (1) the secondary quinone (QB)-dependent electron transfer through PS II is inactivated much faster than the QB-independent electron flow, (2) PS II activity is lost prior to degradation of the D1 protein, (3) diuron, an herbicide that binds to the QB domain on the D1 protein, prevents D1 degradation, and (4) PS II is damaged to a greater extent by the deuteration of thylakoid suspensions but to a lesser extent by the presence of histidine. Furthermore, it was observed that destroying thylakoid Fe-S centers resulted in a marked reduction of high light-induced PS II damage. These results may suggest that the primary processes of photoinhibition are mediated by 1O2 and that Fe-S centers, which are located in some membrane components, but not in PS II, play an important role in photogenerating the activated oxygen immediately responsible for the initiation of photodamage to PS II.  相似文献   

11.
Abstract— Chlorella samples, incubated for varying periods in darkness, were exposed to a series of 20–40 nsec flashes, spaced 15 sec apart, from a Q-switched ruby laser. A stationary Teflon-covered platinum electrode measured the microjet of oxygen produced by each flash. After a dark preincubation exceeding 3 min, at 23°C, little or no oxygen is evolved until the third flash in a sequence. The yields from subsequent flashes increase monotonically until a constant value is reached. If low levels of background light are supplied, or if the interval between series of flashes is decreased, oxygen is evolved on the second or even the first flash. Very similar results were obtained from analogous experiments with tailless 28 μsec flashes from a xenon flashtube. In particular, very little oxygen was evolved from the second flash following a long dark period whatever the spacing between flashes. This means that there are no systematic differences between the effects of saturating 20 nsec and 28 μsec light flashes on the activation processes during the first few flashes following a long dark period. No oscillations of flash yield with successive flashes were observed because of the long interval between flashes. These results are consistent with the idea that the reaction center of Photosystem II must undergo a dark process lasting considerably longer than 28 μsec before it can absorb a second photon.  相似文献   

12.
Abstract— The stabilization of the primary radical pair P680+ pheophytin (Pheo)- through rapid electron transfer from Pheo to the special plastoquinone of photosystem II (PS II), QA, was analyzed on the basis of time-resolved (40 ps) UV-absorption changes detected in different PS II preparations from higher plants. Lifetime measurements of1Chi* fluorescence by single photon counting and a numerical analysis of the redox reactions revealed (1) at exciton densities required for light saturation of the stable charge separation, annihilation processes dominate the excited state decay leading to very similar lifetimes of 1Chi* in systems with open and closed reaction centers and (2) the difference of absorption changes induced by actinic flashes of comparatively high photon density in samples with open and photochemically closed reaction centers, respectively, provides a suitable measure of the rate constant of QA formation. Conclusion 2 was confirmed in PS II membrane fragments by measurements at three wavelengths (280 nm, 292 nm and 325 nm) where the difference spectrum of Q-A formation exhibits characteristic features. The numerical evaluation of the experimental data led to the following results: (1) the rate constant of Q-A formation was found to be (300 ± 100 ps)-1 in PS II membrane fragments and PS II core complexes deprived of the distal and proximal antenna and (2) an iron depletion treatment of membrane fragments does not affect these kinetics. The implications of these results are briefly discussed in terms of the PS II reaction pattern.  相似文献   

13.
Abstract— Spinach leaves and Euglena cells when frozen in light to 77 K emit light during slow warming in the dark to give 6 peaks. The peak appearing at 118 K is observed even after DCMU or heat treatment and also in aged chloroplasts that are inactive in electron transport.
The data indicate that peaks appearing at 261 and 321 K are due to back reactions of primary acceptors of PS II and PS I respectively with oxidized chlorophylls. The DCMU sensitivity of Tl peaks at 283 and 298 K suggests that they are associated with the flow of electrons between PS II and PS I. Evidence has been presented to show that the PS 1 chlorophylls are involved in part of the luminescence observed during the temperature rise.
A mechanism involving the return of the thermally detrapped electrons to the ground state of chlorophylls through their excited states has been proposed to explain some of the Tl peaks.  相似文献   

14.
The physiological relationships between the effects of phytochrome photoequilibrium (Pfr/P) on internode extension growth and dry matter accumulation were investigated in white light (WL)-grown Sinapis alba L. seedlings. After 11 days under continuous WL, the seedlings were exposed: (a) to pulses of light providing different Pfr/P, followed by 24 h darkness (D); (b) to pulses of light providing different Pfr/P, followed by 3 h D and 24 h continuous WL; (c) to continuous WL with or without supplementary far-red light (to reduce Pfr/P); or (d) to pulses of light providing different Pfr/P followed by D, in factorial combination with either water or a saturating (0.2 M) sucrose solution applied to one of the leaves. In D (“a” and “d”) low, compared to high Pfr/P increased both internode extension growth and dry weight to the same extent. Under WL (“b” and “c”) low PfrlP promoted internode extension growth but had no proportional effects on internode dry weight. Sucrose promoted internode extension growth with a lag of at least 8 h (compared to the rapid effect of low Pfr/P) and did not reduce the effect of low Pfr/P. These results indicate that Pfr/P effects on internode extension growth are not the consequence of changes in photoassimilate translocation from the leaves. Under WL, PfdP effects on internode length occur partially at the expense of internode dry matter per unit length.  相似文献   

15.
Abstract— The induction transient of delayed light of chlorophyll a, excited by repetitive flashes (0.5 ms in duration) and emitted 0.1 - 1.2 ms after the flashes, was measured in system II particles derived from spinach chloroplasts. An uncoupler, gramicidin S, was always added to the particles in order to eliminate the influence of the phosphorylation system on the delayed light and to isolate a direct relationship between the delayed light emission and the primary photochemical reaction, except for the experiments described in the next paragraph. The yield of delayed light emission from the system II particles was found to be about three–times higher than that of chloroplasts on a chlorophyll content basis. System I particles, on the other hand, emitted much weaker delayed light than chloroplasts. Upon intermittent illumination, induction of delayed light in system II particles showed a decrease from the initial rise level to the steady-state level. The initial rise level was the maximum. The fluorescence induction, on the other hand, exhibited an increase from the initial rise level to the maximum steady-state level. The induction of both delayed light emission and fluorescence arrived at their final steady-state levels after the same period of illumination. Induction of delayed light emission was measured under various conditions that changed the oxidation-reduction state of the primary electron acceptor, X, of photoreaction II: by adding an electron acceptor and an inhibitor of electron transport, and by changing the light intensity. The state of A'was monitored by measuring the fluorescence yield. The yield of delayed light emission excited by each flash was found to depend on the amount of oxidized form of X present before the flash. To examine the role of the primary electron donor Y of photoreaction II in delayed light emission, effects of electron donors of photoreaction II such as Mn2+, hydroquinone and p-phenylenediamine were investigated. These agents were found to markedly decrease the yield of delayed light emission without altering the pattern of its induction. They had little effect on the induction of fluorescence. These findings are interpreted by a mechanism in which transformation of the reaction center from the form (X-Y+) into (X Y) produces a singlet excitation of chlorophyll a that is the source of millisecond delayed light emission. This reaction is probably non–physiological and must be very slow if compared to the transformation of (X-Y+) into (X-Y). Since the form (X-Y+) is produced when the excitation is transferred to the reaction center in the form (XY), it is expected in this scheme that the yield of delayed light emission should depend on the amount of the form (X Y) present before the excitation flashes. Electron donors stimulate transformation of the reaction center from (X-Y+) into (X-Y). Since this reaction competes with the process of delayed light emission, electron donors are expected to suppress delayed light emission.  相似文献   

16.
In an attempt to uncover electric field interactions between PS I and PS II during their functioning, fluorescence induction curves were measured on hydroxylamine-treated thylakoids of Chenopodium album under conditions ensuring low and high levels of photogenerated membrane potentials. In parallel experiments with Peperomia metallica chloroplasts, the photocurrents were measured with patch-clamp electrodes and served as indicator of electrogenic activity of thylakoid membranes in continuous light. Inhibition of linear electron flow at PS II donor side by hydroxylamine (0.1 mM) eliminated a slow rise of chlorophyll fluorescence to a peak level and suppressed photoelectrogenesis. Activation of PS I-dependent electron transport using cofactors of either cyclic (phenazine methosulfate) or noncyclic electron transport (reduced TMPD or DCPIP in combination with methyl viologen) restored photoelectrogenesis in hydroxylamine-treated chloroplasts and led to reappearance of slow components in the fluorescence induction curve. Exposure of thylakoids to valinomycin reduced the peak fluorescence in the presence of KCl but not in the absence of KCl. Combined application of valinomycin and nigericin in the presence of KCl exerted stronger suppression of fluorescence than valinomycin alone but was ineffective in the absence of KCl. In samples treated with hydroxylamine and PS I cofactors (DCPIP/ascorbate and methyl viologen), preillumination with a single-turnover flash or a multiturnover pulse shifted the induction curves of both membrane potential and chlorophyll fluorescence to shorter times, which confirms the supposed influence of PS I-generated electrical field on PS II fluorescence. A model is presented that describes modulating effect of the membrane potential on chlorophyll fluorescence and roughly simulates the fluorescence induction curves measured at low and high membrane potentials.  相似文献   

17.
Abstract— A comparative study was carried out on the in situ susceptibilities to photoinactivation of the photosystem I (PS I) and II (PS II) complexes of spinach thylakoids treated with efficient type II sensitizers. While the presence of the exogenous sensitizers caused a substantial increase in the extent of photoinactivation of whole chain electron transport, it did not affect PS I activity of thylakoids in light but exerted an enhanced photoinactivating effect only on PS II. The measurements of the action spectrum for the inhibition of PS II activity of the sensitizer-incorporated thylakoids and that for the generation of singlet oxygen (1O2) from them revealed that photosensitized inactivation of PS II is directly related to the photoproduction of 1O2 in thylakoid membranes. The results obtained in the present work clearly demonstrate an exceptional sensitivity of PS II to 1O2, providing circumstantial evidence that high light-induced damage to PS II may result from photosensitization reactions mediated by 1O2, which is not necessarily produced within the PS II complex.  相似文献   

18.
The microalgae Chlamydomonas reinhardtii and Chlorella sp. CCAP 211/84 were grown autotrophically and mixotrophically and their thermoluminescence emissions were recorded above 0 °C after excitation by 1, 2 or 3 xenon flashes or by continuous far-red light. An oscillation of the B band intensity according to the number of flashes was always observed, with a maximum after 2 flashes, accompanied by a downshift of the B band temperature maximum in mixotrophic compared to autotrophic grown cells, indicative of a dark stable pH gradient. Moreover, new flash-induced bands emerged in mixotrophic Chlamydomonas grown cells, at temperatures higher than that of the B band. In contrast to the afterglow band observed in higher plants, in Chlamydomonas these bands were not inducible by far-red light, were fully suppressed by 2 μM antimycin A, and peaked at different temperatures depending on the flash number and growth stage, with higher temperature maxima in cells at a stationary compared to an exponential growth stage. These differences are discussed according to the particular properties of cyclic electron transfer pathways in C. reinhardtii.  相似文献   

19.
AN OSCILLATING SYSTEM REGULATING DEVELOPMENT OF PLANTS   总被引:1,自引:0,他引:1  
Phytochrome conversion shifts the developmental pattern of dark-grown bean (Phaseolus vulgaris) seedlings. Red light was found to initiate rapid oscillations in a system that links illumination with subsequent growth. A single 8 s flash of red light increased the average leaf weight measured 24 h later by 8%. When total illumination was kept constant but the interval between two 4 s flashes was varied, the resulting leaf weight increase was not uniform but depended on the length of the interval between flashes and showed a series of deep minima followed by sharp maxima. Weight increase at the maximum was 60% greater than at the minimum. The minimum-maximum transitions recurred every 45 s for at least 22 min. Four s of far red light interposed between the two red flashes abolished the oscillation. Temperature between 15 and 30°C had no significant influence on the period of the oscillation but the period varied directly with the duration of the initial red flash. A 2 s initial flash resulted in a 35 s period, while 40 s of red light caused a 2 min period. Oat (Avena sativa) and radish (Raphanus sativus) seedlings were found to possess similar oscillating mechanisms of growth regulation. The lack of pronounced temperature effects as well as our other findings, suggest that this oscillating system may participate in the time measuring as well as growth regulating mechanisms by which phytochrome controls circadian periodicity and development.  相似文献   

20.
Incubation of Fe(II) cations with Mn-depleted PSII membranes (PSII(-Mn)) under weak continuous light is accompanied by blocking of the high-affinity, Mn-binding (HAZ) site with ferric cations (Semin, B.K. et al. Biochemistry 2002, 41, 5854-5864). In this study we investigated the blocking yield under single-turnover flash conditions. The flash-probe fluorescence method was used to estimate the blocking efficiency. We found that the yield of blocking increases with flash number and reaches 50% after 7 flashes. When the dark interval between the flashes (Delta t) was varied, we found that the percentage of blocking decreases at Delta t < 100 ms (t 1/2, 4-10 ms). No inhibition of the blocking yield was found at longer time intervals (as with photoactivation). This result shows the necessity of a dark rearrangement during the blocking process (the dual-site hypothesis described in the text) and indicates the formation of a binuclear iron center. During the blocking experiments, we found a binary oscillation of the Fmax elicited during a train of flashes. The oscillations were observed only in the presence of Fe(II) cations or other electron donors (including Mn(II)) but not in the presence of Ca2+. Chelators had no effect on the oscillations. Our results indicate that the oscillations are due to processes on the acceptor side of PSII and to the appearance of "acceptor X" after odd flashes. Acceptor X is reduced by QA- at very high rate (<2 ms), is not sensitive to DCMU, and is rather stable in the dark (t l/2 approximately 2 min). These properties are similar to those of nonheme Fe(III) (Fe(III)NHI). When Fe(II)NHI was oxidized with ferricyanide (Fe(CN)6), the fluorescence decay kinetics and yield of fluorescence were identical to those observed when the sample was exposed to 1 flash prior to the fluorescence measurement. We suggest that acceptor X is Fe(III)NHI, oxidized by the semiquinone form of QB-. This is similar to the mechanism of "reduction-induced oxidation of Fe(II)NHI" by exogenous quinones reported in the literature. We suggest that involvement of QB- in the oxidation of Fe(II)NHI in PSII(-Mn) membranes is due to the modification of the QB-binding site and increase of its redox potential resulting from extraction of the functional Mn cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号