首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
溴代烷烃与活性氮的反应发光研究   总被引:1,自引:0,他引:1  
在流动余辉装置上, 利用N2空心阴极放电制备活性氮, 研究了活性氮与溴代烷烃(CHBr3、CH2Br2、C2H5Br、C4H9Br) 反应的化学发光.上述所有反应中, 在550~750 nm波段均观察到了较强的NBr (b1Σ+→X3Σ-)跃迁发射谱. 同时在活性氮与CHBr3和CH2Br2的反应中, 在流动管下游还观察到了CN (A2π, B2πX2Σ+)的发射谱. 验证性的实验表明, 激发态NBr (b1Σ+)是由二步过程形成: N(4S)与溴代烷烃反应生成NBr (X3Σ-), 再通过N2 (A 3Σu+)分子能量转移到激发态NBr (b1Σ+); 而激发态的CN是通过N(4S) + CBr→CN(A, B) + Br过程形成的.  相似文献   

2.
钙钛矿型LaxSr1-xNi1-yCoyO3光电催化活性研究   总被引:8,自引:0,他引:8  
用甘氨酸-硝酸盐燃烧合成法, 制备LaxSr1-xNi1-yCoyO3复合氧化物的陶瓷粉末, 对钙钛矿氧化物进行了XRD结构分析. 在通氧或不通氧下测试氧还原和氧析出的循环伏安曲线. 结果表明: 该氧电极具有双功能催化特性, 但不完全可逆. 利用汞灯作为激发光源, 进行几种水溶性染料和五种混合染料光解实验, 利用紫外-可见、红外以及人工神经网络光度法研究LaxSr1-xNi1-yCoyO3的催化性能. 结果表明: LaxSr1-xNi1-yCoyO3 (x=0.7, 0.9, 1; y=0.3, 0.75)复合氧化物都具有较强光催化特性; LaxSr1-xNi1-yCoyO3的光催化活性高于LaxSr1-xNiO3, 这与B位离子(Ni2—, Co2-)的电子构型有关; Co2+的加入可使LaxSr1-xNiO3的光催化活性有所提高.  相似文献   

3.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7:0.03Eu,yCe3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7:0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f65d1-4f7跃迁,590~725 nm红光区窄带谱源于Eu3+5D0-7FJ (J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7:0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7:0.03Eu,yCe3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7:0.01Ce3+,0.03Eu的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

4.
The luminescent properties of Pr3+-doped LaB3O6, SrAl12O19, SrB4O7 and NaYF4 in the vaccum ultraviol-et (VUV) range at different temperatures were investigated under the excitation of high-energetic synchrotron radiation. For Pr3+ ions in LaB3O6, SrAl12O19 and SrB4O7, only the parity-forbidden 1S0→4f2 transitions were observ-ed in the emission spectra at relatively low temperature; but the parity-allowed 4f5d→4f2 transitions appeared simultaneously when the temperature was high enough. And the intensity of broad 4f5d→4f2 emission increased relative to the intensity of 1S0→4f2 emissions with increasing temperature. Then the thermal equilibrium model of energy levels was employed to the lowest 4f5d state and 1S0 state of Pr3+ in the three hosts. The calculated curves were in good agreement with the experimental values, indicating the occurrence of the thermal excitation from 1S0 state to 4f5d states at high temperatures when the lowest 4f5d state lies higher than 1S0 state and the photon energy is high enough.  相似文献   

5.
CeCl3-CdCl2-H2O和CeCl3-CdCl2-HCl-H2O的相平衡   总被引:5,自引:0,他引:5  
测定了三元系CeCl3-CdCl2-H2O (25 ℃)和四元系CeCl3-CdCl2-HCl(~8.4%)-H2O(25 ℃) 的相平衡溶度数据,绘制了相应的溶度图.该三元系是由5个固相区CdCl2&;#8226;2.5H2O(原始盐)、CdCl2&;#8226;H2O(原始盐)、6CdCl2&;#8226;CeCl3&;#8226;14H2O、4CdCl2&;#8226;CeCl3&;#8226;12H2O、CeCl3&;#8226;7H2O(原始盐)组成的复杂体系.该四元系是由5个固相区CdCl2&;#8226;H2O(原始盐)、9CdCl2&;#8226;CeCl3&;#8226;19H2O、6CdCl2&;#8226;CeCl3&;#8226;14H2O、4CdCl2&;#8226;CeCl3&;#8226;12H2O、CeCl3&;#8226;7H2O(原始盐)组成的复杂体系.其中6CdCl2&;#8226;CeCl3&;#8226;14H2O在该三元系是介稳化合物.9CdCl2&;#8226;CeCl3&;#8226;19H2O 、6CdCl2&;#8226;CeCl3&;#8226;14H2O和4CdCl2&;#8226;CeCl3&;#8226;12H2O用X射线粉末衍射及TG-DTG和DSC等方法进行了研究,并对X射线粉末衍射进行了指标化.  相似文献   

6.
采用简单沉积-沉淀法合成了Bi2WO6@Bi2MoO6-xF2x(BWO/BMO6-xF2x)异质结,借助XRD、XPS、TEM、SEM、EDS、UV-Vis-DRS、PC和EIS等测试技术对其组成、形貌、光吸收特性和光电化学性能等进行系统表征,并以模型污染物罗丹明B(RhB)的光催化降解作为探针反应来评价Bi2WO6@Bi2MoO6-xF2x异质结的光催化活性增强机制。形貌分析表明,所得Bi2MoO6微球由大量厚度为20~50 nm的纳米片组成;FE-SEM和HR-TEM分析表明,尺寸约为10 nm的Bi2WO6量子点均匀沉积在Bi2MoO6-xF2x微球表面,形成新颖的Bi2WO6@Bi2MoO6-xF2x异质结;与纯Bi2MoO6或者Bi2WO6相比,1∶1Bi2WO6@Bi2MoO6-xF2x异质结表现出更好的光催化活性和光电流性质,其对RhB光催化降解的表观速率常数分别为纯BMO和BWO的6.4和11.6倍。PC和EIS图谱分析表明,Bi2WO6量子点表面沉积显著提高Bi2MoO6-xF2x光生电子/空穴的分离效率和迁移速率;活性物种捕获实验证明了·O2-和h+是主要的活性物种。根据实验结果,探讨了F-掺杂和Bi2WO6量子点之间的协同效应对Bi2MoO6的光催化活性的影响机制。  相似文献   

7.
纳米钙钛矿LaxSr1-xFe1-yCoyO3复合氧化物的制备和表征   总被引:1,自引:0,他引:1  
用甘氨酸-硝酸盐燃烧合成法,制备LaxSr1-xFe1-yCoyO3复合氧化物的陶瓷粉末,对该钙钛矿型氧化物进行了XRD、IR、紫外漫反射光谱及循环伏安曲线分析。结果表明:该复合氧化物粉体平均晶粒为15.3~29.8 nm,为立方和正交晶系。该氧电极具有双功能催化特性,但不完全可逆。对水溶液染料进行光解实验,利用紫外-可见、人工神经网络光度法研究LaxSr1-xFe1-yCoyO3的催化性能。结果表明:CO2+的加入可使LaxSr1-xFeO3的光催化活性有所提高,B位离子(Fe3+,CO2+)改变与加入,使LaxSr1-xFe1-yCoyO3(x=0.7,0.3;y=0.3,0.9,1)光催化活性高于LaxSr1-xFeO3。同时,对5种染料进行紫外光解,在0.75 h,脱色率大于91%,并为动力学一级反应。  相似文献   

8.
新半金属Fe2LaO4磁电性能的第一性原理计算   总被引:1,自引:0,他引:1  
刘俊  陈希明  董会宁 《无机化学学报》2007,23(11):1857-1863
利用基于密度泛函理论的第一性原理赝势法设计并优化了含稀土元素的新半金属Fe2LaO4。详细计算了其电荷分布,分子磁矩等磁电性能,并结合配位场理论分析了其电子结构。结果表明,Fe2LaO4是一种含稀土元素的铁磁性的新ⅡB型半金属;它的稳定相晶格常数约为0.623 nm,分子磁矩约为1.0μB;Fe2LaO4属软铁磁性半金属;La较多的外层电子增强了Fe2LaO4内部的库仑斥力,导致了配合物ML4和ML6均受强场作用,从而使Fe2LaO4具有软铁磁性;考虑自旋分布后ML4和ML6的电子结构分别为a1g1a1g1t1u3t1u3eg2eg2t2g3t2g3↓和a1g1a1g1t1u3t1u3t2g3t2g3eg2eg2eg*1↑,这些电子属于分子轨道。  相似文献   

9.
本文采用离子交换法分别制备了双复合锂锰氧化物Li0.60[MgxMn1-x]O2(0.05 ≤ x ≤ 0.15)和三复合锂锰氧化物Li0.60[MgxCoyMn1-x-y]O2(x=0.05,0.05 ≤   相似文献   

10.
用传统湿式浸渍法制备了La2O3掺杂的商业γ-Al2O3负载的沼气重整催化剂Ni-Co/La2O3-γ-Al2O3, 并用程序升温加氢(TPH)、程序升温氧化(TPO)、程序升温表面反应(TPSR)、程序升温脱附(TPD)及脉冲实验对催化剂进行了表征. 结果表明, 沼气重整过程中Ni-Co/La2O3-γ-Al2O3催化剂上的表面碳物种主要来源于CH4的裂解, CO2的贡献很小. CH4裂解能够产生三种活性不同的碳物种, 即Cα、Cβ与Cγ. 随着反应的进行, Cα物种减小而Cβ与Cγ物种增加, 且Cγ物种能够转变为惰性的石墨碳. 重整反应过程中CH4与CO2的活化能相互促进. 催化剂表面的O物种与C反应生成CO或与CHx反应生成CHxO再分解为CO与吸附态的H物种, 可能是Ni-Co/La2O3-γ-Al2O3催化剂上沼气重整的速率控制步骤.  相似文献   

11.
In situ polymerization by certain transition metal catalysts supported on and activated by acid-treated montmorillonite produces well-dispersed clay-polyolefin nanocomposites, without requiring either organic surfactants to be present in the clay phase or modification of the polyolefin structure.  相似文献   

12.
In order to minimize the oxidative degradation of SBR at high temperature, the nano-dispersed clay layers were introduced by using the SBR/clay (100/80) nanocompound to prepare SBR/clay/carbon black (CB) nanocomposites, then the effects of nano-clay on the properties of SBR nanocomposites are investigated. The clay layers and CB are uniformly dispersed in the SBR matrix at nano-scale. The mechanical properties of the SBR/clay/CB nanocomposites mostly decrease with the increase of clay loading, however, with the increase of clay loading, the change rate of the mechanical properties of the nanocomposites decreases and the aging coefficient of the nanocomposites rises, and the length and depth of the cracks of the aged nanocomposites after bending decrease, which means that the clay layers can provide the nanocomposites excellent thermal aging resistance and heat resistance. The experiment of aging with air and without air proved the importance of oxygen during rubber aging process. The FTIR spectra show the generation of oxygen-containing group on the external surface of the nanocomposites during aging. The DSC results indicate the differences between the internal layer and the external layer of the aged nanocomposites.  相似文献   

13.
Polyethylene/montmorillonite clay nanocomposites were obtained via direct melt intercalation. The clay was organically modified with four different types of quaternary ammonium salts. The objective of this work is to study the use of montmorillonite clay in the production of nanocomposites by means on rheological, mechanical and crystallization properties of nanocomposites and to compare to the properties of the matrix and PE/unmodified clay nanocomposites. In general, the tensile test showed that the yield strength and modulus of the nanocomposites are close to the pure PE. Apparently, the mixture with Dodigen salt seems to be more stable than the pure PE and PE/unmodified clay.  相似文献   

14.
X‐ray diffraction methods were used in an investigation of the structural changes in syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay was prepared by the intercalation of sPS polymer into layered montmorillonite. Both X‐ray diffraction data and transmission electron microscopy micrographs of sPS/clay nanocomposites indicated that most of the swellable silicate layers were exfoliated and randomly dispersed in the sPS matrix. The X‐ray diffraction data also showed the presence of polymorphism in the sPS/clay nanocomposites. This polymorphic behavior was strongly dependent on the thermal history of the sPS/clay nanocomposites from the melt and on the content of clay in the sPS/clay nanocomposites. Quenching from the melt induced crystallization into the α‐crystalline form, and the addition of montmorillonite probably increased heterophase nucleation of the α‐crystalline form. The effect of the melt crystallization of sPS and sPS/clay nanocomposites at different temperatures on the crystalline phases was also examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 736–746, 2002  相似文献   

15.
Via γ‐ray irradiation polymerization, poly(methyl methacrylate) (PMMA)/clay nanocomposites were successfully prepared with reactive modified clay and nonreactive clay. With reactive modified clay, exfoliated PMMA/clay nanocomposites were obtained, and with nonreactive clay, intercalated PMMA/clay nanocomposites were obtained. Both results were confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. PMMA extracted from PMMA/clay nanocomposites synthesized by γ‐ray irradiation had higher molecular weights and narrow molecular weight distributions. The enhanced thermal properties of the PMMA/clay nanocomposites were characterized by thermogravimetric analysis and differential scanning calorimetry. The improved mechanical properties of PMMA/clay were characterized by dynamic mechanical analysis. In particular, the enhancement of the thermal properties of the PMMA/clay nanocomposites with reactive modified clay was much more obvious than that of the PMMA/clay nanocomposites with nonreactive clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3218–3226, 2003  相似文献   

16.
Polyamide 6 (PA6)/clay nanocomposites, based on organo-modified and pristine (i.e. purified but non-modified) montmorillonite, were prepared using a water-assisted extrusion process based on the injection of water during extrusion. The formation of a single PA6/water phase during extrusion (shown by High Pressure Differential Scanning Calorimetry (HPDSC)) improves the clay dispersion, decreases the PA6 melting temperature by 66 °C (so-called cryoscopic effect), and thus prevents the polymer matrix degradation during processing. This process enables the compounding of pristine clay-based nanocomposites whose dispersion state, thermal and mechanical performances are close to what is generally reported for organo-modified montmorillonite-based nanocomposites. Advantage was taken of water-assisted extrusion to optimize the clay dispersion by increasing shear rate and of the cryoscopic effect to limit the degradation by decreasing the processing temperature. Using these conditions PA6/pristine clay nanocomposites properties are similar to those of more conventional PA6/organomodified clay nanocomposites.  相似文献   

17.
A melt blending method was used to prepare ABS/clay and ABS-g-MAH/clay nanocomposites. Cone calorimeter and advanced rheological extension system (ARES©) were employed to measure flammability and dynamic rheological properties. The main aim is to establish a relationship between the clay network structure and flammability properties of polymer nanocomposites. From the results of dynamic rheological measurements, it was found that the clay network structure was formed in ABS-g-MAH/clay nanocomposites, which strongly affected the flammability properties of the nanocomposites. The clay network improves the melt viscosity and results in restraint on the mobility of the polymer chains during combustion, which leads to significant improvement of flame retardancy for the nanocomposites.  相似文献   

18.
The calorimetric characteristics, the flammability, the thermal stability and the microhardness of polyethylene high density/clay nanocomposites (HDPE/clay) have been studied by differential scanning calorimetry, thermogravimetry, determination of limiting oxygen index and microhardness tests. The nanocomposites have been compatibilized by ethylene–acrylic acid copolymer (EAA), acrylic acid grafted HDPE (HDAA) and maleic anhydride grafted HDPE (HDMA). The clay was montmorillonite Cloisite 15A. The influence of the presence and the type of the compatibilizers on the properties of the nanocomposites has been evaluated. The results have shown that the thermal stability, the reduction of the flammability and the microhardness of HDPE/clay nanocomposites, compatibilized by HDAA and HDMA are higher than those for nanocomposite compatibilized by EAA. Moreover, the presence and the type of compatibilizer have negligible effect on the characteristics of the HDPE phase transitions. These results have been interpreted by the better clay dispersion and higher level of clay exfoliation in the presence of compatibilizers HDAA and HDMA, than those in the presence of EAA compatibilizer.  相似文献   

19.
A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays.  相似文献   

20.
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N‐dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free‐volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent‐casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho‐positronium lifetime (τ3), a measure of the free‐volume size, as well as the fractional free volume (fv) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I2), an index of the epoxy–clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age‐momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy–clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号