首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
Mechanistic investigation of ionization suppression in electrospray ionization   总被引:10,自引:0,他引:10  
We show results from experiments designed to determine the relative importance of gas phase processes and solution phase processes into ionization suppression observed in biological sample extracts. The data indicate that gas phase reactions leading to the loss of net charge on the analyte is not likely to be the most important process involved in ionization suppression. The results point to changes in the droplet solution properties caused by the presence of nonvolatile solutes as the main cause of ionization suppression in electrospray ionization of biological extracts.  相似文献   

2.
3.
A new mode of operation for desorption electrospray ionization (DESI) analysis of liquids or solid residues from evaporated solvents is presented. Unlike traditional DESI, the electrospray is not deflected off of a surface but instead is transmitted through a sampling mesh at a 0° angle between the electrospray tip, sample mesh, and capillary inlet of a mass spectrometer. In this configuration, deposited samples can be analyzed rapidly without rigorous optimization of spray distances or angles and without the preparation time associated with solvent evaporation. The new transmission mode desorption electrospray ionization (TM-DESI) technique is not applicable to bulk materials, but instead is a method designed to simplify the sample preparation process for liquid samples and sample extracts. The technique can reduce analysis time to seconds while consuming only microliters of sample. The results presented summarize the optimization of the technique, highlight key figures of merit for several model compounds, and illustrate potential applications to high throughput screening of liquid mixtures in both extraction solvents and biological matrices.  相似文献   

4.
5.
Microfabricated polydimethylsiloxane (PDMS) emitters for electrospray ionization mass spectrometry (ESI-MS) were implemented as tips along the edge of the PDMS device by three methods which utilize soft lithography processes. These microfabrication methods for producing PDMS emitters as an integral part of a microfluidic device will facilitate development of more complex microfluidic analysis systems using ESI-MS.  相似文献   

6.
We have applied desorption electrospray ionization to aerosol particles. Ions were formed from aerosols by merging suspended dry particles with an electrospray of solvent in a modified ion trap mass spectrometer. Dry aerosol particles were generated using a fluidized bed powder disperser and directed toward the inlet of the mass spectrometer. A nanospray source was used to create a spray of solvent droplets directed at the inlet and at a right angle with respect to the aerosol. Ions generated by the interaction of the particles and electrospray were transferred into the ion trap mass spectrometer. Using this method, pure samples of caffeine and erythromycin A were analyzed. In addition, commonly available food and drug powders including instant cocoa powder, artificial sweetener and ibuprofen were analyzed.  相似文献   

7.
The electrospray ionization behavior of some ferrocenylalkylazoles CpFeC5H4CH(R)Az (AzH are derivatives of imidazole, pyrazole, triazole and their benzo analogs; R = H, Me, Et, Ph), ferrocenylalkanols CpFeC5H4CH(R)OH (R = H, Me), and mixtures of the latter with azoles was studied. The electrospray ionization mass spectra of these compounds, in addition to the molecular ion [M], the protonated molecule [M + H]+, and ferrocenylalkyl cation [FcCHR]+ peaks, exhibit also intensive peaks for the binuclear ions [(FcCHR)2X]+ (X = Az or O), resulting from ferrocenylalkylation of the initial compounds with the ferrocenylalkyl cations. Electrospray ionization of an equimolar mixture of ferrocenylmethanol FcCH2OH and imidazole gives the protonated ferrocenylmethylimidazole molecule [FcCH2Im + H]+ and the [FcCH2(Im)2 + H]+ dimer, apart from the ions typical of each component, i.e., ferrocenylalkylation of azoles with the ferrocenylalkylcarbinols, known in the chemistry of solutions, takes place under electrospray conditions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1318–1321, August, 2006.  相似文献   

8.
This work describes the synchronized dual-polarity (DP) electrospray ionization (ESI) method and demonstrates the first DP ESI mass spectra obtained using two mass spectrometers. Stable double Taylor cones were produced by applying two counter electric voltages with opposite polarities to one electrosprayer. The development of double Taylor cones required higher extraction voltages than conventional ESI, but DP ESI worked effectively at liquid flow rate range three times wider than conventional ESI. Using pure methanol, the emission currents of the two cones were neutralized and no current was drawn from the sprayer. Synchronized DP mass spectra were obtained using electrospray calibrants dissolved in methanol solution of low water content. For bovine insulin with conventional electrospray solution, the gas-assisted electrospray delivered satisfactory sensitivity and stability for routine mass analyses.  相似文献   

9.
Internal energies and energy distributions were studied using the 'survival yield' method developed previously. In addition to conventional benzylpyridinium salts, protonated esters (fragmenting by rearrangement) and protonated leucine enkephalin were also used, extending the validity of the technique. Fragmentation processes were studied in the cone voltage region and modeled by the RRKM-based MassKinetics program. The results show that the shapes of the energy distributions are similar to thermal distributions. The mean internal energies are very similar for all compound classes studied, and show a linear increase with collision energy in the 10-50 eV region.  相似文献   

10.
Electrospray ionization (ESI) mechanisms are highly complex, due to a series of physical and chemical phenomena taking place on a complex system, as a solution is. In fact, even if the solution of an analyte in a protic medium can be considered at first sight to be a two-component system, the presence of solvent dissociation equilibria and the possible interactions solvent-solvent dissociation products, solvent dissociation products-analyte make this system highly complex, also for the presence of possible ionic compounds (for example, Na(+), K(+)) which strongly affect the above equilibria. A high number of research articles have been published, mainly devoted to charged droplet production and to gas-phase ion generation. They all show the high complexity of the processes affecting electrospray measurements related to either the chemical equilibria present in the condensed phase and to electrolysis processes at the emitter tip or to the processes occurring in the sprayed droplets. As a result, the chemical composition inside the small droplets from which the analyte ions are generated can be significantly different from those in sprayed solution. In this review, after a short survey of the proposed ESI mechanisms, some experiments are described. They were performed to examine if ion mobility in solution, before the formation of the sprayed charged droplets, can affect the ESI results. The data, obtained by studying both inorganic and organic analytes, indicate that the ESI spectra are dependent on the analyte dimension and charge state which, as a consequence, affect their ion mobility in solution.  相似文献   

11.
In this work, we give the report of significant detection sensitivity improvement of electrospray ionization (ESI) mass spectra of polysaccharides by adding various ionic liquid compounds into samples. Mass spectra obtained were greatly simplified and appeared to be similar to spectra from matrix-assisted laser desorption/ionization due to the narrow charge number distribution. Mass spectra of polysaccharides with the attachment of either anion or cation of ionic liquid compounds were observed. No protonated or deprotonated polysaccharide ions were detected when ionic liquid compounds were added into samples. Little alkali-attached polysaccharide ions were observed. Ionic liquid-assisted ESI (ILA-ESI) mass spectrometry has significantly improved the detection sensitivity of large neutral polysaccharide compounds.  相似文献   

12.
Redox changes occur in some circumstances when organic compounds are analyzed by desorption electrospray ionization mass spectrometry (DESI-MS). However, these processes are limited in scope and the data presented here suggest that there are only limited analogies between the redox behavior in DESI and the well-known solution-phase electrochemical processes in standard electrospray ionization (ESI). Positive and negative ion modes were both investigated and there is a striking asymmetry between the incidence of oxidation and of reduction. Although in negative ion mode DESI experiments, some aromatic compounds were ionized as odd-electron anion radicals, examples of full reduction were not found. By contrast, oxidation in the form of oxygen atom addition (or multiple oxygen atom additions) was observed for several different analytes. These oxidation reactions point to chemically rather than electrochemically controlled processes. Data is presented which suggests that oxidation is predominantly caused by reaction with discharge-created gas-phase radicals. The fact that common reducing agents and known antioxidants such as ascorbic acid are not modified, while a saturated organic acid like stearic acid is oxidized in DESI, indicates that the usual electrochemical redox reactions are not significant but that redox chemistry can be induced under special experimental conditions.  相似文献   

13.
Rezenom YH  Dong J  Murray KK 《The Analyst》2008,133(2):226-232
We have used an infrared laser for desorption of material and ionization by interaction with electrosprayed solvent. Infrared laser-assisted desorption electrospray ionization (IR LADESI) mass spectrometry was used for the direct analysis of water-containing samples under ambient conditions. An ion trap mass spectrometer was modified to include a pulsed Er:YAG laser at 2.94 microm wavelength coupled into a germanium oxide optical fiber for desorption at atmospheric pressure and a nanoelectrospray source for ionization. Analytes in aqueous solution were placed on a stainless steel target and irradiated with the pulsed IR laser. Material desorbed and ablated from the target was ionized by a continuous stream of charged droplets from the electrosprayed solvent. Peptide and protein samples analyzed using this method yield mass spectra similar to those obtained by conventional electrospray. Blood and urine were analyzed without sample pretreatment to demonstrate the capability of IR LADESI for direct analysis of biological fluids. Pharmaceutical products were also directly analyzed. Finally, the role of water as a matrix in the IR LADESI process is discussed.  相似文献   

14.
Editorial Comment Last month we presented, as a Special Feature, a set of five articles that constituted a Commentary on the fundamentals and mechanism of electrospray ionization (ESI). These articles produced some lively discussion among the authors on the role of electrochemistry in ESI. Six authors participated in a detailed exchange of views on this topic, the final results of which constitute this month's Special Feature. We particularly hope that younger scientists will find value in this month's Special Feature, not only for the science that it teaches but also what it reveals about the processes by which scientific conclusions are drawn. To a degree, the contributions part the curtains on these processes and show science in action. We sincerely thank the contributors to this discussion. The give and take of intellectual debate is not always easy, and to a remarkable extent this set of authors has maintained good humor and friendships, even when disagreeing strongly on substance. Graham Cooks and Richard Caprioli Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Low-flow electrospray ionization is typically a purely electrostatic method, used without supporting sheath-gas nebulization. Complex spray morphology results from a large number of possible spray emission modes. Spray morphology may assume the optimal Taylor cone-jet spray mode under equilibrium conditions. When coupling to nanobore gradient elution chromatography, however, stability of the Taylor cone-jet spray mode is compromised by the gradient of mobile phase physiochemical properties. The common spray modes for aqueous/organic mobile phases were characterized using orthogonal (strobed illumination) transmitted light and (continuous illumination) scattered light imaging. Correlation of image sets from these complementary illumination methods provides the basis for spray mode identification using qualitative and quantitative image analysis. An automated feedback-controlled electrospray source was developed on a computer capable of controlling electrospray potential using an image-processing based algorithm for spray mode identification. The implementation of the feedback loop results in a system that is both self-starting and self-tuning for a specific spray mode or modes. Thus, changes in mobile phase composition and/or flow rate are compensated in real-time and the source is maintained in the cone-jet or pulsed cone-jet spray modes.  相似文献   

16.
Current commercially available ion mobility spectrometers are intended for the analysis of chemicals in the gas phase. Sample introduction methods, such as direct air sampling, a GC injector or a thermal desorber, are commonly an integral part of these instruments. This paper describes an electrospray ionization ion mobility spectrometer system that allows direct introduction samples in solution phase. This allows direct analysis of non-volatile organic and biological samples, and avoids decomposition of thermally liable samples, providing reliable chemical identification. In addition, the new ion mobility spectrometer allows mobility analysis with high resolving power. Commonly used commercial IMS systems provide resolving powers between 10 and 30; this new ion mobility spectrometer has resolving power greater than 60 for routine analysis. A high resolution instrument is necessary for many applications where a complex mixture needs to be separated and quantified. This paper demonstrates the advantages of using a high resolution ion mobility spectrometer and an electrospray ionization source for the analysis of non-volatile pharmaceuticals as well as dissolved explosive in solution phase.  相似文献   

17.
The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.  相似文献   

18.
19.
This review reports the results of some studies carried out by us on the role of pneumatic aspects in electrospray and desorption electrospray surface ionization, with the aim to propose some relevant aspects of the mechanisms involved in these ionization methods. Electrospray ion sources, with the exception of the nano- electrospray source, operate with the concurrent action of a strong electrical field and a supplementary coaxial gas flow. The electrical field is responsible for electrospraying of the analyte solution but the use of a coaxial gas flow leads to a significant increase of the analyte signal and allows the use of higher solution flows. However, by employing capillary voltages much lower than those necessary to activate the electrospray phenomenon, analyte ions are still observed and this indicates that different mechanisms must be operative for ion production. Under these conditions, ion generation could take place from the neutral pneumatically sprayed droplet by field-induced droplet ionization. Also in the case of desorption electrospray ionization (DESI), and without any voltage on the spraying capillary as well as on the surface of interest, ions of analytes present on the surface become detectable and this shows that desorption/ionization of analytes occurs by neutral droplets impinging the surface. Consequently, the pneumatic effect of the impinging droplets plays a relevant role, and for these reasons the method has been called pneumatic assisted desorption (PAD). Some analogies existing between PAD and surface activated chemical ionization (SACI), based on the insertion of a metallic surface inside an atmospheric pressure chemical ionization source operating without corona discharge, are discussed.  相似文献   

20.
A new method was developed which fits a thermal internal energy distribution to ions formed by electrospray ionization. The molecular ion survival yield was measured and determined by RRKM calculations as a function of temperature. The ('characteristic') temperature was determined when the calculated and measured molecular ion survival yields were equal. The 'characteristic' temperatures were very similar (average RSD errors were 8%) for a set of analogous compounds (benzylpyridine salts), and the resulting thermal internal energy distributions were close to those determined by De Pauw's method. The validity of the method was also checked performing blackbody infrared radiation and on-resonance excitation experiments on a Fourier transform ion cyclotron resonance instrument with benzylpyridine salts and leucine enkephalin. The results strongly suggest that internal energy distributions in electrospray ionization are very close to thermal distributions. It was found that the characteristic temperature increases linearly with the cone voltage. It is suggested that the characteristic temperature can be used as a quantitative measure to control and standardize conditions in electrospray ionization. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号