首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The water‐soluble tetra‐, hexa‐ and octasulfonated calix[4]arenes, calix[6]arenes, and calix[8]arenes 1 – 3 , respectively, were investigated as potential synthetic receptors for photolabile cholinergic ligand A , a photolytic precursor of choline. Ligand A is a bifunctional molecule carrying a photolabile 2‐nitrobenzyl group at one end and a choline moiety at the other end. Results from NMR studies have shown that calixarenes 1 – 3 form stable 1 : 1 complexes with A , having similar binding potential to that observed with the cholinergic enzymes acetylcholinesterase and butyrylcholinesterase. Further studies have suggested that calix[8]arene forms a ditopic complex by binding concomitantly to both the cationic choline moiety and the aromatic photolabile group of A , whereas calix[4]arene and calix[6]arene form monotopic complexes with A . The ditopic complex between calix[8]arene and A results from mutually induced fitting process, while the monotopic complexes between calix[4]arene and A can be regulated by pH: at neutral pH, calix[4]arene specifically binds the cationic choline moiety, while, at acidic pH, it complexes unselectively both the cationic choline moiety and the aromatic group of A . Our results show that para‐sulfonated calixarenes are versatile artificial receptors which bind in various ways to the bifunctional photolabile cholinergic ligand A , depending on their size, geometry, and state of protonation.  相似文献   

2.
Pendant groups such as esters, amides, carboxylic acids, etc. have been grafted at thelower rim of call-c[41arene to produce a variety of novel ionophores'. The call-c[4]areneswith different functional groups have showed coordination diversity for alkali metalcanons2. In this paper we described the synthesis of a new calixarene derivative withpodand-armed functional group and the property as ionophore and extractant for cesiumIOn.25, 26, 27, 28-Tetrakis[2-(o-methoxyphenoxy) 3 wassynthesized f…  相似文献   

3.
New calix[5]arene trivalent phosphorus derivatives have been synthesized which should be excellent ligands with which to study and control the interaction of a ligand atom with a metal. The larger cavity of the calix[5]arene (compared to calix[4]arene) provides a good balance between constraint and flexibility. Treatment of p-tert-butylcalix[5]arene with 2 equiv of either tris(dimethylamino)phosphine or dichlorophenylphosphine inserts two RP moieties into the calix[5]arene framework to give calix[5](PR)2(OH) (1, R = Me2N; 2, R = Ph). Further treatment of 1 with 4 equiv of HCl gives calix[5](PCl)2(OH) (3). Heating a solution of the monophosphorus compound calix[5](PNMe2)(OH)3 (4) releases dimethylamine to yield both monomeric calix[5](P)(OH)2 (6) and dimeric [calix[5](P)(OH)2](2) (7), the latter having a tubelike geometry. X-ray crystallographic studies confirm the structures and show that 1 and 2 have approximate cone conformations while 3 has an approximate 1,2-alternate conformation. The orientations of the phosphorus lone pairs and oxygen atoms in all derivatives provide a framework for both soft and hard ligand interactions within the calix[5]arene.  相似文献   

4.
Kim S  Kim JS  Shon OJ  Lee SS  Park KM  Kang SO  Ko J 《Inorganic chemistry》2004,43(9):2906-2913
The preparation of an 1,3-alternate calix[4]arene phosphorus ligand, 25,27-bis(2-(diphenylphosphino)ethoxy)-26,28-bis(1-propyloxy)calix[4]arene (3), is presented. Ligand 3 is obtained in three steps in 64% overall yield. Reaction of 3 with [Rh(cot)2]BF4 produced the encapsulated rhodium complex [Rh[(P,P)-diphen-calix[4]arene]]BF4 (4). As revealed by a single-crystal X-ray diffraction study, the rhodium center has a bent coordination environment with a P-Rh-P angle of 135.66(3) degrees. Palladation of 3 employing [Pd(MeCN)4](BF4)2 yielded the chelate palladium complex 7 in which the palladium center has a slightly bent configuration. Treatment of the ligand with Pd(cod)Cl2 and [Pd(eta3-C4H7)(THF)2]BF4 leads to the isolation of the monometallic complex. Full characterization includes X-ray structural studies of compounds 3, 4, and 6.  相似文献   

5.
The ligation properties of three new upper-rim-substituted calix[4]arene ligands, 5,17-bis(hydroxymethyl)-tetra-n-butoxycalix[4]arene ((HOCH2)2-nBu4Clx, 7), 5,17-bis((diphenylphosphinito)methoxy)-tetra-n-butoxycalix[4]arene ((PPh2OCH2)2-nBu4Clx, 8), and 5,17-bis((diphenylphosphino)methyl)-tetra-n-butoxycalix[4]arene ((PPh2CH2)2-nBu4Clx, 10) are reported herein. The newly prepared compounds differ from previously reported diametrically substituted calix[4]arene derivatives in that the lower-rim substituent was n-butyl. The presence of this lower-rim substituent did not reduce the inherent crystallinity of these complexes as purification of all materials occurred via simple crystallizations. The key precursor for the syntheses of 8 and 10 was 7, acquisition of which occurred in six steps starting from tetra-tert-butylcalix[4]arene, 1. Calix[4]arene derivatives include, tetra-n-butoxycalix[4]arene (nBu4Clx, 3), 5,11,17,23-tetrabromo-tetra-n-butoxycalix[4]arene (Br4-nBu4Clx, 4), 5,17-dibromo-tetra-n-butoxycalix[4]arene (Br2-nBu4Clx, 5), 5,17-bis(formyl)-tetra-n-butoxycalix[4]arene ((CHO)2-nBu4Clx, 6), and 5,17-bis(chloromethyl)-tetra-n-butoxycalix[4]arene ((ClCH2)2-nBu4Clx, 9), all of which were synthesized using modifications of existing procedures. Characterization of all compounds occurred, when possible, using 1H, 13C, and 31P NMR, elemental analyses, FAB-MS, ESI-MS, FT-IR, and X-ray crystallography. The solid-state structures of all calix[4]arene intermediates and ligands showed that the annulus adopted the pinched-cone conformation in which the average C(5)...C(17) intraannular separation was 4.5 +/- 0.4 A. Reaction of 7 with CpTiMe3 yielded the cis-chelate, CpTi(Me)[(OCH2)2-nBu4Clx] (11), quantitatively. Data obtained using ESI-MS (positive-ion mode) confirmed the monomer formulation showed above, and 1H NMR spectra provided sufficient information to deduce the nature of the Ti coordination sphere. Reaction of 8 with cis-Cl2Pd(NCPh)2 in refluxing benzene afforded cis-Cl2Pd[(PPh2OCH2)2-nBu4Clx] (12) in good yields. The monomeric identity of this compound was verified by both X-ray crystallography and positive-ion ESI-MS. The cis-bidentate calix[4]arene ligand did not undergo any noticeable contortion upon chelation of the PdCl2 fragment. Acid-promoted decomposition of 12 occurred in the presence of adventitious HCl and gaseous HCl, and the products of this decomposition were 9 and [mu2-ClPd(PPh2OH)(PPh2O)]2. In addition, chelates of 8 that contained Mo(CO)3L (L = NCMe (14a), NCEt (14b), and CO (14c)) showed that the mode of coordination was relatively insensitive to the identity of the metal. X-ray crystallography afforded views of the solid-state structures of 14b,c and, like 12, showed that the Mo(CO)3L fragment resided above the pinched-cone of the calix[4]arene. 1H NMR revealed that C-H/pi interactions existed between L (14a,b) and a phenyl ring of the coordinated phosphinite. Finally, the bis(diphenylphosphine)calix[4]arene ligand (10) readily coordinated the Mo(CO)3L species, but the reaction did not go to completion, as evidenced by 1H NMR, even after a 5 day reaction time. Data suggest that the product is similar to that observed for 12 and 14, but the incomplete reaction complicated attempts to obtain pure material and prohibited definitive assignment of the coordination array.  相似文献   

6.
Kim S  Kim JS  Kim SK  Suh IH  Kang SO  Ko J 《Inorganic chemistry》2005,44(6):1846-1851
The preparation of an 1,3-alternate calix[4]arene tetraphosphane ligand, 25,26,27,28-tetrakis{2-(diphenylphosphino)ethoxy}calix[4]arene (4), is described. Ligand 4 is obtained in four steps in 17% overall yield. Reaction of 4 with AgBF4 produced the encapsulated two silver complex [Ag2{(P,P,P,P)-tetraphencalix[4]arene}](BF4)2. The solid-state structure shows that the encapsulated silver undergoes a substantial pi-interaction by two opposite arene rings. Rhodation of 4 employing [Rh(cot)2]BF4 yielded the encapsulated complex with a bent coordination mode. Two organometallic fragments inclusioned inside a 1,3-alternate calix[4]arene tetraphosphane was also achieved by the reaction of 4 with [PtH(PPh3)2 (thf)]+. Full characterization includes X-ray structural studies of compounds 4-6.  相似文献   

7.
Equilibria for the formation of supramolecular complexes of [60]fullerene with a series of mono O-substituted calix[6]arenes, namely: (i) 37-methoxy-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (1), (ii) 37-allyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (2), (iii) 37-phenacyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (3), (iv) 37-ethylester-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (4) and (v) 37-benzyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (5) have been studied in CCl4 medium by absorption spectroscopic technique. The stoichiometry has been found to be 1:1 ([60]fullerene:calix[6]arene) in each case. An absorption band due to charge transfer (CT) transition is observed in each case in the visible region. The vertical ionisation potentials (I(D)(v)) of all the calix[6]arenes under study have been estimated utilising CT transition energy. The experimental I(D)(v) values also yield a good estimate of the electron affinity of [60]fullerene. The degrees of CT in the ground state of the complexes have been found to be very low (about 0.15%). Resonance energy of the complexes have been estimated. Thermodynamic parameters for the supramolecular complex formation of [60]fullerene with mono O-substituted calix[6]arene receptors are reported. It is observed that among the calix[6]arenes under the present study, only 1 and 4 form inclusion complexes with [60]fullerene. This has also been substantiated by theoretical calculation using PM3 method. Thus presence of one substituent group (of different types) on the lower rim of the calix[6]arene molecule has been shown to govern the host-guest complexation process.  相似文献   

8.
The stability of some porphyrin-calix[4]arene sodium-ion complexes were determined by a collision-activated decomposition (CAD) method utilizing electrospray ionization mass spectrometry (ESI-MS). Comparing the values of E(1/2), the collision energy at which the relative intensity of the complex ion is 0.5, we found that the porphyrin-calix[4]arene complex with the higher value of E(1/2) corresponded to that with the larger association constant (Kass), as measured by 1H-NMR in CDCl3. Both our ESI-MS and NMR studies proved that the number of hydrogen bonds and the rigidity of the calix[4]arene stabilized the complex. The ESI-MS technique could be successful in screening the binding affinity in host-guest systems with a small amount of sample.  相似文献   

9.
The transition metal-directed self-assembly of dithiocarbamate ligand functionalized upper and lower rim calix[4]arenes affords novel dimeric bimetallic bis(calix[4]arene) species as determined by a combination of analytical methods including X-ray crystallography. An exception is a zinc(II) dithiocarbamate upper rim calix[4]arene assembly which is monomeric in nature. Electrochemical investigations reveal the bimetallic copper(II) bis(calix[4]arene) systems can electrochemically sense dihydrogen phosphate and carboxylate anions via significant cathodic perturbations of the respective copper(II)/(III) dithiocarbamate oxidation wave.  相似文献   

10.
New upper-rim polyphosphorylated calix[4]arenes were designed for decorporation of uranium in case of nuclear contamination. A ligand system containing four preorganized 1-hydroxymethylene-1,1-bisphosphonic acid moieties anchored onto a calix[4]arene platform has been developed. Three calix[4]arene-bisphosphonates were efficiently prepared in multi-step syntheses with a variable carbon chain length between the bisphosphonate and the calix[4]arene. Affinity constants towards uranyl ion were determined and compared with those of bis(HEDP) and tris(HEDP) phosphonates, known as efficient ligands for uranyl.  相似文献   

11.
Tetrakis-(4-carbamoylphenyl)-substituted and tetrakis-(4-amidophenyl)-substituted calix[4]arenes as well as the monomeric biphenylcarbamate have been synthesized as fluorescent receptors for anion sensing. Their binding properties with various anions including F-, CH3COO-, Ph-COO-, and H2PO4- were investigated by fluorescence titrations, Job plot experiments, 1H NMR spectroscopies, and ESI-MS measurements. Importantly, we have found that calix[4]arene-based sensors exhibit greatly enhanced binding affinity and selectivity toward carboxylates. The binding associations of tetrakis-(4-carbamoylphenyl)-substituted calix[4]arene for carboxylates are 1-2 orders of magnitude greater than those of the monomeric biphenylcarbamate sensor. Such an enhancement in the binding affinity and selectivity is attributed to the cooperative binding of the multiple ligating groups as revealed from the ab inito DFT calculations. Although tetrakis-(4-amidophenyl)-substituted calix[4]arene exhibited relatively weaker binding affinity toward anions, its superior binding selectivity for acetate ion over fluoride ion is evident. Our results also suggest that carbamate functionality is a useful H-bond donor for hydrogen-bonding interactions in molecular recognition and supramolecular chemistry.  相似文献   

12.
The usage of calix[n]arenes as ancillary poly(phenolate) ligands is a rapidly developing area in coordination chemistry. This article focuses on the synthesis, structure and reactivity of calix[4]arene‐ and calix[4]arene ether‐stabilized imido complexes of group 4 — 6 transition metals as well as on the comparison of calix[4]arene dialkyl ethers in particular with other widely employed related ligand systems such as salenes, porphyrins and tetraazaannulenes. Contrary to these nitrogen containing systems, it is much easier to control the charge of the ligand system through the degree of alkylation of the calixarene's lower rim without a major change in the geometry of the resulting metal complex. This could lead to isoelectronic and structurally closely related transition metal complex fragments for metals in neighboring groups of the periodic table or for metals in different oxidation states. The “intrinsic” reactivity of metal imido linkages might therefore be explored using calix[4]arenes and calix[4]arene ethers and first results are summarized in this research report.  相似文献   

13.
New compounds: 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(3-diisopropoxyphosphorylpropoxy)calix[4]arene (1) and 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(3-methoxyethoxyphosphorylpropoxy)calix[4]arene (2) were synthesized and their ionophoric properties in ion-selective membrane electrodes were studied in comparison with already described by us 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(3-diethoxyphophorylpropoxy)calix[4]arene (3). Complexes of 1 with calcium(II), lanthanum(III), europium(III) and gadolinium(III) nitrates were prepared in direct reaction of the ligand and appropriate metal salts. They were characterized by spectral data (IR, UV/Vis, luminescence, NMR, ESI-MS) and elemental analysis. The similarity in complexing behavior of the (dialkoxyphosphoryl)propoxy-calix[4]arenes toward calcium and some lanthanides was observed.  相似文献   

14.
A host-[2]rotaxane was constructed by converting a diaminophenylcalix[4]arene into a [2]rotaxane using the DCC-rotaxane method (Zehnder, D.; Smithrud, D. B. Org. Lett. 2001, 16, 2485-2486). N-Ac-Arg groups were attached to the dibenzo-24-crown-8 ring of the rotaxane to provide a convergent functional group. To demonstrate the advantage provided by the rotaxane architecture for recognition of guests that contain a variety of functional groups, association constants (K(A)) for N-Ac-Trp, indole, N-Ac-Gly, fluorescein, 1-(dimethylamino)-5-naphthalenesulfonate, and pyrene bound to the [2]rotaxane were determined by performing (1)H NMR and fluorescence spectroscopic experiments. The host-[2]rotaxane had the highest affinity for fluorescein with a K(A) = 4.6 x 10(6) M(-)(1) in a 98/2 buffer (1 mM phosphate, pH 7)/DMSO solution. A comparison of K(A) values demonstrates that both the aromatic pocket and ring of the host-[2]rotaxane contribute binding free energy for complexation. Association constants were also derived for the same guests bound to the diaminophenylcalix[4]arene and to a diphenylcalix[4]arene that contained arginine residues displayed in a nonconvergent fashion. The host-[2]rotaxane provides higher affinity and specificity for most guests than the host with divergent N-Ac-Arg groups of the one that only has an aromatic pocket. For example, the K(A) for the complex of the host-[2]rotaxane and fluorescein in the DMSO/water mixture is more than 2 orders of magnitude greater than association constants derived for the other hosts.  相似文献   

15.
A novel hybrid macrocyclic receptor based on bile acid and calix[4]arene has been synthesized using the α-face of the bile acid and cone-conformation of calix[4]arene. Metal recognition properties of receptor were investigated. The receptor showed the strongest affinity for Hg2+ in acetonitrile. The stoichiometry of the Receptor:Hg2+ was 1:1.  相似文献   

16.
The article describes the synthesis of a family of novel calix[4]arene ionophores, 25,27-bis-(2-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5a), 25,27-bis-(3-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5b) and two chromogenic calix[4]arenes, 5,17-dinitro-25,27-bis-(2-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5c), 5,17-dinitro-25,27-bis-(3-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5d) bearing pyridinium units. In the synthesis, the upper and lower rims of p-tert-butylcalix[4]arene were modified in order to acquire binding sites for the recognition of arsenate and dichromate anions. It has been observed that protonated alkylammonium forms of the ionophores showed high affinity toward dichromate and arsenate anions.  相似文献   

17.
A novel thiacalix[4]arene ditopic receptor with 1,3-alternate conformation and possessing two complexation sites for hard and soft cations, 5,11,17,23-tetra-tert-butyl-25,27-bis[(N,N-diethylaminocarbonyl)methoxy]-26,28-bis[(pyridylmethyl)oxy]-2,8,14,20-tetrathiacalix[4]arene is prepared. Regioselective synthesis of distal-bis[(N,N-diethylaminocarbonyl)methoxy]thiacalix[4]arene is accomplished by a protection-deprotection method using benzyl groups as a protecting group. The deprotection of benzyl group was succeeded in the presence of solid superacid (Nafion-H) under refluxing benzene. Its complexation behavior is examined by 1H-NMR titration experiments. The formation of 1:2 homo- and heteronuclear complexes demonstrates that the preorganization, subtle conformational changes and affinity have a pronounced effect on the complexation of the receptor.  相似文献   

18.
The calix[4]arene niobium(III) complex ([L]Nb-N=N-Nb[L] where [L] = p-tert-butylcalix[4]arene), reported to bind N(2) in a μ(2)-linear dimeric capacity and to activate the N(2) triple bond to 1.39 ?, corresponding to the longest N(2) bond known in the end-on coordination mode, was subjected to a computational investigation involving both density functional and wavefunction based methods to establish the basis for the unprecedented level of activation. Replacement of the calix[4]arene ligand with hydroxide or methoxide ligands reveals that the organic backbone structure of the calix[4]arene ligand exerts negligible electronic influence over the metal centre, serving only to geometrically constrain the coordinating phenoxide groups. A fragment bonding analysis shows that metal-to-dinitrogen π* backbonding is the principal Nb-N interaction, providing a strong electronic basis for analogy with other well-characterised three- and four-coordinate complexes which bind N(2) end-on. While the calculated structure of the metallacalix[4]arene unit is reproduced with high accuracy, as is also the Nb-Nb separation, the calculated equilibrium geometry of the complex under a variety of conditions consistently indicates against a 1.39 ? activation of the N(2) bond. Instead, the calculated N-N distances fall within the range 1.26-1.30 ?, a result concordant with closely related three- and four-coordinate μ(2)-N(2) complexes as well as predictions derived from trends in N-N stretching frequency for a number of crystallographically characterized linear N(2) activators. A number of potential causes for this bond length discrepancy are explored.  相似文献   

19.
Areneruthenium(II) molecular complexes of the formula [Ru(arene)(Q)Cl], containing diverse 4-acyl-5-pyrazolonate ligands Q with arene = cymene or benzene, have been synthesized by the interaction of HQ and [Ru(arene)Cl(micro-Cl)]2 dimers in methanol in the presence of sodium methoxide. The dinuclear compound [{Ru(cymene)Cl}2Q4Q] (H2Q4Q = bis(4-(1-phenyl-3-methyl-5-pyrazolone)dioxohexane), existing in the RRuSRu (meso form), has been prepared similarly. [Ru(cymene)(Q)Cl] reacts with sodium azide in acetone, affording [Ru(cymene)(Q)N3] derivatives, where Cl- has been replaced by N3-. The reactivity of [Ru(cymene)(Q)Cl] has also been explored toward monodentate donor ligands L (L = triphenylphosphine, 1-methylimidazole, or 1-methyl-2-mercaptoimidazole) and exo-bidentate ditopic donor ligands L-L (L-L = 4,4'-bipyridine or bis(diphenylphosphino)propane) in the presence of silver salts AgX (X = SO3CF3 or ClO4), new ionic mononuclear complexes of the formula [Ru(cymene)(Q)L]X, and ionic dinuclear complexes of the formula [{Ru(cymene)(Q)}2L-L]X2 being obtained. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. Their redox properties have been investigated by cyclic voltammetry and controlled potential electrolysis, which, on the basis of their measured RuII/III reversible oxidation potentials, have allowed the ordering of the bidentate acylpyrazolonate ligands according to their electron-donor character and are indicative of a small dependence of the HOMO energy upon the change of the monodentate ligand. This is accounted for by DFT calculations, which show a relevant contribution of acylpyrazolonate ligand orbitals to the HOMOs, whereas that from the monodentate ligand is minor.  相似文献   

20.
The reactivity of CO(2) with polyamino substrates based on calix[4]arenes and on a difunctional, noncyclic model has been studied. All the compounds react with CO(2) in chloroform to form ammonium carbamate salts. However, the number, topology, and conformational features of the amino-functionalized arms present on the multivalent scaffold have a remarkable influence on the reaction efficiency and on the product composition. Tetraaminocalix[4]arenes 1-3 rapidly and efficiently react with 2 equiv of CO(2), yielding highly stable hydrogen-bonded dimers formed by the self-assembly of two bis-ammonium bis-carbamate intramolecular salts. 1,3-Diaminocalix[4]arene 4 absorbs 1 mol of CO(2), affording less stable zwitterionic ammonium carbamates. Gemini compound 5 reacts with CO(2) in a 1:1 stoichiometry, forming hydrogen-bonded dimers of ammonium carbamate derivatives of moderate stability. For upper rim 1,3-diaminocalix[4]arene 6, in addition to the labile intramolecular salt, the presence of a self-assembled polymer was also detected. These systems were fully characterized in solution by (1)H and (13)C NMR spectroscopy, whereas the corresponding gas-solid reactions were further investigated by QCM measurements. Interestingly, the high affinity and reversibility of CO(2) uptake shown by 1,3-diamino calix[4]arene 4 enabled us to attain a promising QCM device for carbon dioxide sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号