首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of Ba3[UO2(C2O4)2(NCS)]2 · 9H2O are synthesized and studied by X-ray diffraction. The crystals are orthorhombic, space group Fddd, Z = 16, and the unit cell parameters are a = 16.253(3) Å, b = 22.245(3) Å, c = 39.031(6) Å. The main crystal structural units are mononuclear complex groups [UO2(C2O4)2NCS]3? of the crystal-chemical family (AB 2 01 M1 (A = UO 2 2+ , B01 = C2O 4 2? , M1 = NCS?) of the uranyl complexes linked into a three-dimensional framework by electrostatic interactions and hydrogen bonds involving oxalate ions and water molecules.  相似文献   

2.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

3.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

4.
New caprolactam dodecamolybdosilicate of the composition (C6H11NO)4.5Н4[SiМо12O40] (I) is synthesized. Chemical and crystallographic analyses, NMR and IR spectroscopic studies are performed. Compound I is found to crystallize in the monoclinic system with the space group P21/n. Unit cell parameters are: a = 19.945(4) Å, b = 13.340(3) Å, c = 28.110(6) Å, β = 110.75(3)°, ρcalc = 2.232 g/cm3, М = 2350.63, Z = 4, V = 6994(3) Å3.  相似文献   

5.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

6.
The structure of tri-μ2-disulfido-μ3-thiotris(diethyldithiocarbamato)-S,S′-triangle-trimolybdenum iodide [Mo33-S)(μ2-S2)3(Et2NCS2)3]I was determined. The compound was characterized by differential thermal analysis and IR, Raman, and X-ray electronic spectroscopy.  相似文献   

7.
The compound [Co(NH3)6]2[W4Se4(CN)12]·8.5H2O was obtained by evaporating an aqueous ammonia solution of K6[W4Se4(CN)12]·6H2O and CoCl2·6H2O complexes. The starting Co(II) of CoCl2·6H2O transforms into [Co(NH3)6]3+ when exposed to air in a water-ammonia medium. Crystal data: triclinic crystal system, a = 10.7750(8) Å, b = 12.2843(9) Å, c = 19.6539(14) Å; α = 90.213(2)°, β = 99.910(2)°, γ = 114.737(1)°, V = 2319.1(3) Å3, space group , Z = 2, D x = 2.633 g/cm3.Original Russian Text Copyright © 2004 by I. V. Kalinina, Z. A. Starikova, F. M. Dolgushin, D. G. Samsonenko, and V. P. Fedin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 905–908, September–October, 2004.  相似文献   

8.
An approach for significantly suppressing N2O formation in reduction of NO by NH3 over V2O5–WO3/TiO2 (VWT) catalyst has been studied by coating different amounts of a Fe-exchanged zeolite (FeZ) onto the catalyst. FeZ-promoted VWT samples were characterized using N2 sorption, X-ray diffraction (XRD) analysis, and NH3 adsorption/desorption techniques to understand the primary role of FeZ in lowering N2O production levels. At high temperatures (≥450 °C), VWT gave N2O production with high concentrations, while N2O formation was noticeably reduced when using FeZ-promoted catalysts, which also showed somewhat lower NO removal activities (<5 %) at all temperatures. N2 sorption and XRD measurements revealed no perceptible physical or chemical alterations of each constituent, even in VWT catalysts after FeZ coating following high-temperature calcination. Adsorption of NH3 on unpromoted and FeZ-promoted catalysts and subsequent desorption yielded very complicated spectra for N2O that might primarily come from NH3 oxidation, and the interaction between V–NO species at temperatures >580 °C. NO on neighboring sites seems to be produced via decomposition of N2O generated at lower temperatures. The FeZ in the promoted VWT catalysts could be responsible for N2O decomposition and N2O reduction with unreacted NH3 at temperatures >400 °C, thereby significantly lowering N2O emission levels. This promotional effect bodes well for use in many industrial deNO x applications.  相似文献   

9.
10.
A new compound containing the tetraphenylphosphonium cation and the nickel(III) bisdicarbollyl anion, [(C6H5)4P][Ni(B9C2H11)2]·CCl4, was synthesized and investigated by XRD at room temperature (295 K). Crystal data: C29H42B18PCl4Ni, M = 816.69, monoclinic, space group P2/c; unit cell parameters a = 13.5873(6) Å, b = 7.1475(2) Å, c = 20.7829(8) Å, β = 94.4595(13)°, V = 2012.2(2) Å3, Z = 2, d calc = 1.348 g/cm3. The structure was solved by direct and Fourier methods and refined by the full-matrix least squares method in an anisotropic (isotropic for H) approximation to the final R 1 = 0.0466 for 3055 I hkl ≥ 2σ I of 23,655 reflections collected and 5618 independent I hkl (Bruker X8 APEX diffractometer, λMoK α).  相似文献   

11.
The single crystals of Rb2[(UO2)2(C2O4)2(SeO4)] · 1.33H2O were synthesized and studied by X-ray diffraction. The crystals are monoclinic, space group P21/m, Z= 2, the unit cell parameters: a = 5.6537(8), b = 18.736(3), c = 9.4535(15) Å, β = 98.440(5)°, V = 990.6(3) Å3, R 1 = 0.0506. The main structural units of the crystal are infinite layers of [(UO2)2(C2O4)2(SeO4)]2?, corresponding to the crystal chemical group A2K 2 02 B2 (A = UO 2 2+ , K02 = C2O 4 2? , B2 = SeO 4 2? ) of uranyl complexes. The uranium-containing layers are united into a three-dimensional framework through the electrostatic interactions with the outer-sphere rubidium ions and the hydrogen bonding system involving the outer-sphere water molecules.  相似文献   

12.
Single crystal X-ray diffraction study of glycine phosphite C2H5NO2·H3PO3 was performed (monoclinic, space group P21/c, a = 7.401(3) Å, b = 8.465(3) Å, c = 9.737(3) Å; β = 100.73(5)°, Z = 4). It has been found that one of hydrogen atoms is located at the centre of symmetry forming two strong hydrogen bonds to yield H4P2O 6 ?2 dimers, while another hydrogen atom is statistically disordered over two positions and organizes the dimers into an infinite corrugated chain. The ordering of this hydrogen atom position and/or displacement of the other one from the centre of symmetry will lead to the loss of symmetry centre and lowering of the point group symmetry from C2h to piezo-active group C2 or C s .  相似文献   

13.
Composite solid electrolytes were synthesized from the organic salt dimethylammonium chloride (1–x)C2H8NCl–xAl2O3. Their physicochemical properties were studied. In the starting C2H8NCl salt, there is a phase transition at 39°C accompanied by an increase in conductivity by two orders of magnitude. The conductivity of the high-temperature phase is 9.3 × 10–6 S/cm at 160°C. A differential scanning calorimetry study showed that the salt in the composites spreads over the oxide surface and at x > 0.6 the salt melting enthalpy decreases to zero. The conductivity of the resulting composites was studied by impedance spectroscopy. It was shown that heterogeneous doping leads to a sharp increase in ion conductivity to 7.0 × 10–3 S/cm at 160°C and a decrease in the activation energy to 0.55 eV.  相似文献   

14.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

15.
Xiang Yao  Yi Hu  Zhi Su 《Chemical Papers》2017,71(12):2465-2471
A new composite, Li2MnO3·LiNi0.5Co0.45Fe0.05O2, can be synthesized by a solid-state method and preconditioned with 5 wt% HCl, H2SO4, or H3PO4 solution to achieve H+/Li+ exchange. The effects of acid treatment on the structure, morphology, and electrochemical properties of Li2MnO3·LiNi0.5Co0.45Fe0.05O2 cathode materials are analyzed. The X-ray powder diffraction patterns imply that the hexagonal α-NaFeO2 structure (space group R\(\bar{3}\)m) of the materials is not changed by the acid treatment. The scanning electron microscope images show that particles become spherical with smooth surfaces after acid treatment, and the Brunauer–Emmett–Teller analysis reveals that the specific surface area increases. The charge–discharge test demonstrates that acid-treated Li2MnO3·LiNi0.5Co0.45Fe0.05O2 cathode materials deliver higher initial coulombic efficiencies than untreated material, owing to the improvement of the catalytic reduction activity of oxygen released during the initial charge process. Furthermore, Li2MnO3·LiNi0.5Co0.45Fe0.05O2 treated with HCl displays the best electrochemical performance, with the acid treatment improving the initial coulombic efficiency from 66.0 to 82.2%. Thus, acid treatment can effectively improve the electrochemical performance of electrode materials in Li-ion batteries.  相似文献   

16.
17.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

18.
A series of MoO3/ZrO2–Al2O3 catalysts was prepared and investigated in the sulfur-resistant methanation aimed at production of synthetic natural gas. Different methods including impregnation, deposition precipitation, and co-precipitation were used for preparing ZrO2–Al2O3 composite supports. These composite supports and their corresponding Mo-based catalysts were investigated in the sulfur-resistant methanation, and characterized by N2 adsorption–desorption, XRD and H2-TPR. The results indicated that adding ZrO2 promoted MoO3dispersion and decreased the interaction between Mo species and support in the MoO3/ZrO2–Al2O3 catalysts. The co-precipitation method was favorable for obtaining smaller ZrO2 particle size and improving textural properties of support, such as better MoO3 dispersion and increased concentration of Mo6+ species in octahedral coordination to oxygen. It was found that the MoO3/ZrO2–Al2O3 catalyst with ZrO2Al2O3 composite support prepared by co-precipitation method exhibited the best catalytic activity. The ZrO2 content in the ZrO2Al2O3 composite support was further optimized. The MoO3/ZrO2–Al2O3 with 15 wt % ZrO2 loading exhibited the highest sulfur-resistant CO methanation activity, and excess ZrO2 reduced the specific surface area and enhanced the interaction between Mo species and support. The N2 adsorption-desorption results indicated that the presence of ZrO2 in excessive amounts decreased the specific surface area since some amounts of ZrO2 form aggregates on the surface of the support. The XRD and H2-TPR results showed that with the increasing ZrO2 content, ZrO2 particle size increased. These led to the formation of coordinated tetrahedrally Mo6+(T) species and crystalline MoO3, and this development was unfavorable for improving the sulfur-resistant methanation performance of MoO3/ZrO2–Al2O3 catalyst.  相似文献   

19.
Nanocrystalline NH4ZrH(PO4)2·H2O was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O and (NH4)2HPO4 as raw materials. X-ray powder diffraction analysis showed that NH4ZrH(PO4)2·H2O was a layered compound with an interlayer distance of 1.148 nm. The thermal decomposition of NH4ZrH(PO4)2·H2O experienced four steps, which involves the dehydration of the crystal water molecule, deamination, intramolecular dehydration of the protonated phosphate groups, and the formation of orthorhombic ZrP2O7. In the DTA curve, the three endothermic peaks and an exothermic peak, respectively, corresponding to the first three steps' mass losses of NH4ZrH(PO4)2·H2O and crystallization of ZrP2O7 were observed. Based on Flynn–Wall–Ozawa equation and Kissinger equation, the average values of the activation energies associated with the NH4ZrH(PO4)2·H2O thermal decomposition and crystallization of ZrP2O7 were determined to be 56.720 ± 13.1, 106.55 ± 6.28, 129.25 ± 4.32, and 521.90 kJ mol−1, respectively. Dehydration of the crystal water of NH4ZrH(PO4)2·H2O could be due to multi-step reaction mechanisms: deamination of NH4ZrH(PO4)2 and intramolecular dehydration of the protonated phosphate groups from Zr(HPO4)2 are simple reaction mechanisms.  相似文献   

20.
A powder of deuterated rubidium diselenatouranylate dihydrate Rb2UO2(SeO4)2 · 2D2O has been studied by neutron diffraction. The compound is orthorhombic, space group Pna21, with the following unit cell parameters: a = 13.654(2) Å, b = 11.863(2) Å, c = 7.625(1) Å, Z = 4, R F = 3.77, R I = 6.12, and χ2 = 2.21. Basic structure units are [UO2(SeO4)2 · D2O]2? layers belonging to the AB 2 2 M1 crystal-chemical group (A = UO 2 2+ , B2 = SeO 4 2? , M1 = D2O) of uranyl complexes. The hydrogen atoms if the water molecules involved in the layer form intralayer hydrogen bonds with the terminal oxygen atoms of selenate ions. The outer-sphere water molecules are coordinated to the rubidium ions and are involved in hydrogen bonding with oxygen atoms of neighboring [UO2(SeO4)2 · D2O]2? layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号