首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes synthesis and optimization of pectin grafted poly(N-isopropylacrylamide) hydrogels as vehicles for colon-targeted theophylline model drug release. The gels were prepared in the presence of N, N′–methylenebisacrylamide (MBAA) crosslinker and ceric ammonium nitrate (CAN) initiator under N2 atmosphere. Optimum conditions, in terms of percent of grafting (%G), were determined as follows: pectin = 1.0 g, [NIPAAm] = 26.51 mM, [MBAA] = 0.65 mM, [CAN] = 0.073 mM, polymerization temperature = 30°C and time = 4.0 h. Hydrogels were characterized by FTIR, TGA, DSC, XRD and SEM. The formed hydrogel did not have a thermo-sensitivity behavior. The in vitro percent drug release was studied in terms of different percent of grafting and different polymerization temperatures under two pH values namely 5.5 and 7.4. Conclusively, the optimum colon-targeted vehicle properties that provide the least drug release at pH5.5 and the most drug release at pH7.4 were as follows: [NIPAAm] = 26.51 mM and [MBAA] = 0.56 mM, polymerization temperature = 30°C and %G = 55.5.  相似文献   

2.
采用阴离子配位聚合方法, 合成了二氧化碳、1,2-环氧丁烷与ε-己内酯的三元共聚物: 聚[碳酸(亚丁酯-co-ε-己内酯)酯](PBCL). 并采用复相乳液(W/O/W)溶剂挥发法制备了包裹抗菌药物甲磺酸帕珠沙星的可降解微球. 对聚合物进行了FTIR, 1H NMR, 13C NMR, DSC, TGA和WAXD等表征, 以及降解性能和载药微球特性的研究. 结果表明, PBCL热稳定性及降解性能优于聚碳酸亚丁酯(PBC). 所得PBCL微球球形规整、表面光滑. 大部分微球粒径在0.5~1 μm的范围内, 载药量和包封率分别达到38.21%和87.9%. 微球的体外释药性能研究在pH 7.4的磷酸缓冲溶液中进行, 释放21 d后, PBCL微球的累积释药量为84.74%, PBC微球的释药量仅为17.29%. 药物的体外释放行为符合Higuchi方程. PBCL载药微球具有长效缓释作用.  相似文献   

3.
Drug nanocarriers with magnetic targeting and pH‐responsive drug‐release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug‐loading capacity and poor control over drug release. Herein, core–shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH‐responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug‐loaded HMIOs were coated with a protective layer of ACP by using adenosine 5′‐triphosphate (ATP) disodium salt (Na2ATP) as stabilizer, and drug‐loaded core–shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as‐prepared HMIOs/drug/ACP drug‐delivery system exhibits superparamagnetism and pH‐responsive drug‐release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel‐loaded core–shell hollow microspheres of MIO@ACP exhibited high anticancer activity.  相似文献   

4.
Abstract

A series of tertiary amine containing PHMEMA-PEG-PHMEMA ABA triblock copolymers were synthesized by atom transfer radical polymerization (ATRP) using bromine-capped poly(ethylene glycol) (Br-PEG-Br) and 2-(hexamethyleneimino)ethyl methacrylate (HMEMA) as macro-initiator and monomers, respectively. The chemical structures and molecular weights of triblock copolymers were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behaviors of copolymers in different pH conditions were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Triblock copolymers self-assembled into micelles in water (pH 7.4) and the micelles disassembled at acidic pH (pH 5.0). Anticancer drug doxorubicin (DOX) was used as a drug model and physically encapsulated into polymeric micelles. The drug release of DOX-loaded polymeric micelles was pH-responsive; the drug-loaded micelles that had higher contents of tertiary amine in polymer pendant groups showed faster release speed. In addition, the drug-loaded micelles showed excellent inhibition efficacy against HeLa cells in vitro.  相似文献   

5.
Glutaraldehyde cross‐linked chitosan microspheres for controlled release of isoniazid were prepared using chitosan of different molecular weights (MWs) and degrees of deacetylation (DDAs). Chitosan microspheres were characterized for their size, hydrophobocity, degree of swelling and loading of isoniazid. Hydrophobicity of chitosan microspheres increased on increasing the degree of cross‐linking and MW of chitosan. Chitosan microspheres with high degree of deacetylation (DDA) (75 wt%), high MW chitosan (2227 kg mol?1), and with 12 wt% concentration of glutaraldehyde showed optimum loading and release of isoniazid. The isoniazid from chitosan microspheres was released in two steps, i.e. burst (%RB) and controlled (%RC) steps. The microspheres with low MW chitosan (260 kg mol?1) and low DDA (48 wt%) showed prominent burst release of isoniazid, but microspheres with high MW chitosan (2227 kg mol?1) and high DDA (75 wt%) have released more isoniazid in a controlled manner (60 wt%) at 37°C in a solution of pH 5.0 ± 0.1. The burst step of drug release (%RB) has followed first order kinetics, whereas controlled step of drug release (%RC) followed zero order kinetics. The burst step of drug release was Fickian and controlled step was non‐Fickian in nature. The diffusion constant (D) for isoniazid release was influenced by the properties of chitosan and degree of cross‐linking. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Novel carboxymethyl chitosan (O-CMCS) microspheres containing an anti-tumor drug chelerythrine (CHE) have been successfully prepared by an emulsion crosslinking method using glutaraldehyde. The optimized microsphere formulation was characterized for particle size, shape, morphology, crystallinity and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency and in vitro drug release of chelerythrine loaded microspheres were found to be 12.18 μm, 4.08%, 54.78% and 35.30% at pH 7.4 in 20 h, respectively. The optimized microspheres had an imperfect crystalline lattice and a spherical, rough morphology and the CHE release from O-CMCS microspheres followed the Higuchi matrix model. All these results suggested that O-CMCS microspheres are a promising carrier system for controlled drug delivery.  相似文献   

7.
Porous microspheres have been prepared by suspension free radical polymerization of acrylic acid (AA) in the presence of chitosan (CHI). The microspheres were characterized by FTIR and environmental SEM. The PAA content of the microspheres was estimated to be in the range 45–50 wt.‐%. The swelling degree of these particles is almost constant in the range 2 < pH < 5, but it increases considerably as the pH is raised from 5 to 10. The release profiles of microspheres loaded with meclofenamic acid (MF) were determined at pH 2, 7.4, and 10. The in vitro release of MF at different pHs was modulated by the solubility of the drug. These microcapsules are biodegradable and presented good biocompatibility and biodegradability during in vivo experiments.

ESEM microphotograph of the porous PAA/CHI microspheres.  相似文献   


8.
The novel magnetic molecularly imprinted polymers (MMIPs) had been synthesized using N,N-bis methacryloyl ethylenediamine as a cross-linker for the controlled release of meloxicam at a pH of 1.0 (simulated gastric fluid), at a pH of 6.8 (simulated intestinal fluid) and at a pH of 7.4 (simulated biological fluids). The MMIPs were prepared via precipitation polymerization, using Fe3O4 as a magnetic component, meloxicam as a template molecule, methacrylic acid (MAA) as a functional monomer and N,N-bis methacryloyl ethylenediamine as a new cross-linker in acetonitrile/dimethyl sulfoxide porogen. Magnetic non-molecularly imprinted polymers (MNIPs) were also prepared with the same synthesis procedure as with MMIPs only without the presence of the template. The obtained MMIPs were characterized using transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). The performance of the MMIPs for the controlled release of meloxicam was assessed, and the results indicated that the magnetic MIPs also had potential applications in drug controlled release.  相似文献   

9.
《印度化学会志》2021,98(8):100109
Polyelectrolyte based nano and micro capsules have been extensively studied as promising drug carrier in recent years. Natural degradable capsules have received great deal of attention due to their fascinating structural and morphological characteristics, biocompatibility, sustained and targeted-release capabilities. In this work, chitosan - dextran sulphate nano capsules were prepared via Layer-by-Layer (L-b-L) technique using sacrificial template for drug delivery applications. The loading and in vitro release studies were performed using ciprofloxacin hydrochloride as a model drug. The release media used in the study are plain water and Phosphate Buffered Saline (PBS). The optimum drug load was 389 ​μg, at a loading pH of 2.1 and a temperature of 25 ​°C for 50 ​min encapsulation time. The drug loaded capsules exhibited a slow and sustained release up to 24 ​h and the maximum release rate was obtained at pH 1.2 in water and pH 7.4 in PBS. Least amount of drug release occurred at pH 5.0 in both the release media. The amounts of drug release in water at pH 1.2, pH 5.0 and pH 7.4 are 309 ​μg, 163 ​μg and 251 ​μg respectively where as the corresponding values in the case of PBS (at pH 1.2, pH 5.0 and pH 7.4) are 236 ​μg, 198 ​μg and 251 ​μg respectively. Two different models namely, Ritger - Peppas and Higuchi models were chosen to study the release kinetics behaviour of ciprofloxacin hydrochloride. The prepared bio-degradable capsules had potential as drug carrier for targeting antibacterial drugs with diverse functionality.  相似文献   

10.
Poly(butylene-co-ε-caprolactone carbonate) (PBCCL) was successfully synthesized via terpolymerization of carbon dioxide, 1,2-butylene oxide (BO), and ε-caprolactone (ε-CL). ε-CL was inserted into the backbone of BO-CO2. The glass transition temperature (Tg) and the decomposition temperature (Td) of PBCCL were much higher than those of poly(butylene carbonate) (PBC). The degradation rate of PBCCL was higher than that of PBC in a pH 7.4 phosphate-buffered solution. ε-CL offered an ester structural unit that gave the terpolymers remarkable degradability. PBC and PBCCL microcapsules containing a hydrophilic antibiotic drug pazufloxacin mesilate (PZFX) were elaborated by solvent evaporation method based on the formation of double W/O/W emulsion. Microcapsules were characterized in terms of the morphology, size, amount of encapsulated, and encapsulation efficiency. The results showed that the microcapsules had smooth and spherical surfaces, and the mean diameter of the microcapsules was in the range of 0.5–1 μm. Of all, 87.90% drug encapsulation efficiency has been achieved for microcapsules of 38.21% drug loading. In vitro drug release of these microcapsules was performed in a pH 7.4 phosphate-buffered solution. The release profiles were investigated from the measurement of PZFX presented in the release medium at various intervals. The release profiles of PZFX from PBC and PBCL microcapsules were found to be biphasic with a burst release followed by a gradual release phase. The release rate of PZFX from the microcapsules increased with increasing the content of ε-CL inserted into the copolymers. It showed that the release profiles of PZFX were highly polymer-dependent. © 2007 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 45: 2152–2160, 2007  相似文献   

11.
Pectins (Pec) of 33 to 74?% esterification degree were tested with doxorubicin (Dox), a very high toxic drug widely used in cancer therapies. Pec with 35 and 55?% DE were selected because of the Dox binding higher than Pec microspheres of 35 and 55?% obtained by ionotropic gelation with Ca+2 have 88 and 66?% Dox loading capacity. Kinetic Dox release showed more than 80.0 and about 30.0?% free drug from 35?% and 55?% Pec formulations at pH 7.4, and 37?°C after 1-h incubation, respectively. Besides, Dox release decrease to 12?% in 55?% Pec microsphere formulation after 1-year storage at 4?°C. FTIR analysis of Pec?CDox complex showed hipsochromic shifts for the ??C=O, ??N-H and ??C-C vibrational modes compared to Dox spectrum suggesting strong interaction between the drug cargo and the matrix. Rheological studies of Pec and Pec?CDox samples flow behavior exhibited a shear-thinning nature. Fifty-five percent of Pec showed higher viscosity than the viscosity for 35?% Pec in all range of temperatures analyzed, and decreased when the temperature is raised. Besides, Pec?CDox complexes have higher viscosity values than those of the corresponding Pec samples, and viscosity curves as function of shear rate for 35?% Pec?CDox are above the curves of 55?% Pec?CDox. In both cases, the results are confirming significant interaction between the cargo and the matrix, which also was established in viscoelastic dynamic analysis.  相似文献   

12.
This study is aimed to develop a well‐defined ABC triblock terpolymer, poly(ethylethylene phosphate)‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (PEEP‐b‐PCL‐b‐PDMAEMA), for co‐encapsulating anticancer drug doxorubicin (DOX) and DNA to form polyplexes. The terpolymer is first synthesized via a combination of ring‐opening polymerization and atom‐transfer radical polymerization techniques, and characterized by 1H NMR and gel permeation chromatography. Subsequently, the self‐assembly behavior of the terpolymer and the micelles loaded with DOX or DNA are investigated by dynamic light scattering, ζ potential, transmission electron microscopy, and gel retardation assay, respectively. In vitro release study reveals that much more DOX is released at pH 5.0 than that at pH 7.4 in the same period. The simultaneous delivery of DOX and green fluorescent protein (GFP)‐labeled DNA is studied by a fluorescence microscope and the results demonstrate that both drug and GFP–DNA can be efficiently delivered into HeLa cells. This system presents a practical and promising carrier for the co‐delivery of drugs and genes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3005–3016  相似文献   

13.
Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH sensitivity were developed for oral delivery of protein drugs, using bovine serum albumin (BSA) as a model drug. The composite drug-loaded microparticles with a mean particle size less than 200 μm were prepared by a convenient shredding method. Since the microparticles were formed by tripolyphosphate cross-linking, electrostatic complexation by alginate and/or pectin, as well as ionotropic gelation with calcium ions, the microparticles exhibited an improved pH-sensitive drug release property. The in vitro drug release behaviors of the microparticles were studied in simulated gastric (pH 1.2 and pH 5.0), intestinal (pH 7.4) and colonic (pH 6.0 and pH 6.8 with enzyme) media. For the composite microparticles with suitable compositions, the releases of BSA at pH 1.2 and pH 5.0 could be effectively sustained, while the releases at pH 7.4, pH 6.8 and pH 6.0 increased significantly, especially in the presence of pectinase. These results clearly suggested that the microparticles had potential for site-specific protein drug delivery through oral administration.  相似文献   

14.
Novel stimuli‐responsive hydrophilic microspheres were prepared by free radical polymerization of hydroxyethyl methacrylate (HEMA) and methacrylic acid (MA), as hydrophilic monomers, and N‐isopropylacrylamide (NIPAAm) and N,N′‐ethylenebisacrylamide (EBA), as thermo‐sensitive monomer and crosslinker, respectively. Hydrophilic comonomers were introduced in the macromolecular network to synthesize materials with tunable thermal behavior. In addition, by introducing in the polymerization feed both a hydrophilic and a pH‐sensitive monomer, such as MA, dual stimuli‐responsive (pH and temperature) hydrogels were synthesized. The incorporation of monomers in the network was confirmed by infrared spectroscopy, while the network density and the shape of hydrogels was found to strictly depend on the concentration of monomers in the polymerization feed. Thermal analyses showed negative thermo‐responsive behavior with pronounced water affinity of microspheres at a temperature lower than lower critical solution temperature (LCST). In our experiment, the LCST values of the hydrogels were in the range 34.6–37.5°C, close to the body temperature, and the amount of hydrophilic moieties in the polymeric network allows to collect shrinking/swelling transition temperatures higher than the LCST of NIPAAm homopolymers. In order to test the preformed materials as drug carriers, diclofenac diethylammonium salt (DDA) was chosen and drug entrapment percent was determined. Drug release profiles, in media at different temperature and pH, depend on hydrogels crosslinking degree and drug–bead interactions. By using semi‐empirical equations, the release mechanism was extensively studied and the diffusional contribute was evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
New biodegradable polymeric hydrogels based on biocompatible materials, lactose acrylate (LA) and N-vinyl-2-pyrrolidinone were designed and synthesized. LA was synthesized and characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Hydrogel synthesis was carried out by free-radical polymerization of the co-monomers using azobisisobutyronitrile as initiator and N,N-methylenebisacrylamide as crosslinker. These hydrogels were also characterized. Equilibrium swelling of the hydrogels was studied in phosphate buffer of physiological pH, 7.4 and at 37 °C. Propranolol hydrochloride was entrapped into these hydrogels and the in vitro release profile of this drug was established in phosphate buffer. The drug release followed a near zero-order fashion in the first 6 h and thereafter slowed down releasing more than 90% of the entrapped drug at the end of 48 h.  相似文献   

16.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

17.
It has been demonstrated that 1,25 dihydroxyvitamin D3 (1,25(OH)2VD3) can inhibit the proliferation of cancer cells, including colorectal and hepatocellular cells which are mainly responsible for liver cancer. However, the use of 1,25(OH)2VD3 is hampered due to the development of hypercalcaemia. We hereby report a promising technique in liver cancer treatment by utilizing crosslinked microspheres prepared by polymerization as a carrier to control the release of 1,25(OH)2VD3 or hydrophobic drug in general at targeted sites over a long period. Microspheres in the size range of 35 μm were prepared and the drug was loaded to these poly(vinyl neodecanoate-crosslinked-ethyleneglycol dimethacrylate) microspheres after polymerization. The release study has shown that up to 1% of the drug was released after 40 days. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and direct contact cytotoxicity assay using HT-20 and L929 confirm the non-toxicity of these spheres.  相似文献   

18.
Sulfasalazine (SLZ) is a synthetic nonsteroidal anti-inflammatory drug used mainly for the treatment of an inflammatory bowel and other diseases. Two pectins with different methylation degrees were blended to synthesized gel microspheres by ionotropic gelation for SLZ encapsulation. The encapsulation efficiency was found to be around of 99% in all formulations tested. However, different SLZ release profiles related to the methylation degrees of pectin were observed. Mixture of low methylated (LM) and high methylated (HM) pectins in the presence of calcium(II) displayed the best microsphere morphologies among the formulations tested determined by optical and electronic microscopies. The percentage of drug release using a mixture of LM and HM pectins after 255?min in simulated gastric fluid (pH?=?1.2), simulated intestinal fluid (pH?=?6.8), and phosphate buffer (pH?=?7.4) were 15.0%, 47.0%, and 52.2%, respectively.  相似文献   

19.
A kind of pH‐responsive carbon quantum dots?doxorubicin nanoparticles drug delivery platform (D‐Biotin/DOX‐loaded mPEG‐OAL/N‐CQDs) was designed and synthesized. The system consists of fluorescent carbon dots as cross‐linkers, and D‐Biotin worked as targeting groups, which made the system have a pH correspondence, doxorubicin hydrochloride (DOX) as the target drug, oxidized sodium alginate (OAL) as carrier materials. Ultraviolet (UV)‐Vis spectrum showed that the drug‐loading rate of DOX is 10.5%, and the drug release in vitro suggested that the system had a pH response and tumor cellular targeted, the drug release rate is 65.6% at the value of pH is 5.0, which is much higher than that at the value of pH is 7.4. The cytotoxicity test and laser confocal fluorescence imaging showed that the synthesized drug delivery system has high cytotoxicity to cancer cells, and the drug‐loaded nanoparticles could enter the cells through endocytosis.  相似文献   

20.
Gold supra-pyramid structures were obtained by the addition of acidic solution of cucurbit[8]uril (CB[8]) to an aqueous solution of citrate stabilized gold nanoparticles (AuNP). The reaction resulted in the precipitation of supra-pyramid from the solution after just 1 min of shaking. Microscopic images confirmed formation of the supra-pyramid. The stepwise structural transformation towards the supra-pyramid was examined with variable concentrations of CB[8] to AuNP solution. Anionic counter parts of these acids (Br, NO3, SO42− and Cl) controlled the size of the synthesized supra-pyramids. These supra-pyramid hosts showed uptake of three anticancer drugs: oral drugs etoposide, prednisolone and intravenous drug doxorubicin. Releases of drugs from these hosts were emulated at acidic stomach pH, basic small intestinal pH and in the presence of human serum albumin (HSA). The specific release of doxorubicin was confirmed at small intestinal pH 7.4. Poor release of drugs in presence of CB[8] specific guest 1-adamantanamine confirmed the role of the supra-pyramid as the exclusive host. The release of doxorubicin from the supra-pyramid at pH 7.4 was confirmed by fluorescence microscopic imaging with prostate cancer DU-145 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号