首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
细胞色素c/L-半胱氨酸修饰金电极检测亚硝酸根   总被引:2,自引:1,他引:1  
采用循环伏安法、交流阻抗法研究了组装在L-半胱氨酸(L-Cys)修饰金电极上的细胞色素c(Cyt c)电化学行为;采用电化学方法以及紫外-可见光谱对电极进行表征.结果表明:通过静电吸附作用组装在L-Cys修饰金电极上的细胞色素c保持了良好的生物和电化学活性,用Cyt c/L-Cys修饰金电极检测亚硝酸根,响应电流与亚硝酸根浓度在5.0×10-6~4.5×10-4mol·L-1范围内呈线性关系,线性回归方程为Ip=0.031 c 8.165×10-6,相关系数为0.999 5,检出限(S/N=3)为1.5×10-7mol·L-1.电极用于模拟样品及咸菜样品中亚硝酸根的测定,回收率为89.0%~116.0%.  相似文献   

2.
本文采用滴涂法制备了还原氧化石墨烯/Nafion溶液修饰玻碳电极(rGO/Nafion/GCE),用电化学聚合法将L-半胱氨酸(L-Cys)聚合在rGO/Nafion/GCE表面,得到Poly-L-Cys/rGO/Nafion/GCE。采用伏安法研究了芦丁在该修饰电极上的电化学行为及其影响因素。结果表明,L-Cys的电聚合圈数对修饰电极的电化学性能具有一定的影响。在最优条件下,芦丁的峰电流与其浓度在2.0×10~(-8)~1.0×10~(-5) mol/L内呈现好的线性关系,检出限(S/N=3)为1.0×10~(-8) mol/L。  相似文献   

3.
成功制备了由L-半胱氨酸和CdTe量子点作为修饰材料的电化学传感器并用于水体中Pb~(2+)的检测。巯基丙酸修饰的CdTe量子点通过水相合成,表面含有大量羧基,与L-半胱氨酸表面的氨基形成酰胺键,修饰于金电极表面。通过荧光分光光度计、透射电子显微镜、红外光谱、X射线衍射对L-Cys/CdTe QDs复合材料进行表征。采用循环伏安法(CV)研究了L-Cys/CdTe QDs修饰成分在金电极上的电化学性能及CdTe量子点的最佳自组装时间。采用差分脉冲溶出伏安法(DPSV)研究了铅离子在修饰电极上的电化学行为。在优化实验条件下,Pb~(2+)浓度在1.0×10~(-6)~1.0×10~(-2) mol/L范围内与其峰电流呈良好的线性关系,相关系数(r2)为0.993 8,检出限(3σ,n=5)为4.0×10~(-7) mol/L。该传感器具有良好的重现性和稳定性,有望用于实际水样中铅离子的检测。  相似文献   

4.
L-半胱氨酸自组装电极循环伏安法测定多巴胺   总被引:1,自引:0,他引:1  
建立了痕量多巴胺(DA)电化学分析方法.在pH 7.6的0.2 mol/L Na2HPO4-NaH2PO4 0.1 mol/L KCl底液中,L-半胱氨酸(L-Cys)自组装金电极对多巴胺有明显的电催化氧化作用,考察了该电极作为DA传感器的实验条件.结果表明:DA在L-Cys/Au电极上的氧化峰电流与多巴胺的浓度在一定范围内成线性关系,线性范围为6.7×10-5~4.6×10-3 mol/L,检出限为8.4×10-6 mol/L,平行测定8次,相对标准偏差为3.2%,用于盐酸多巴胺注射液中DA的测定,回收率为94%~96%.  相似文献   

5.
在裸金电极上制备了L-半胱氨酸自组装膜修饰电极(L-Cys/SAM-CME),研究了对乙酰氨基酚(AP)在L-Cys/SAM-CME上的电化学行为,结果发现该修饰电极对AP的氧化具有催化作用,与裸金电极相比,氧化峰电位降低了68mV,峰电流增大了1.2×10-5A。本文探讨自组装膜修饰技术用于构建不可逆双安培法的可行性,利用对AP在L-Cys/SAM-CME上的催化氧化和高锰酸钾在裸金电极上的还原构建双安培检测体系,建立了在外加电压为0V条件下流动注射双安培法直接测定对AP的方法。在0V外加电压下,0.05mol/L硫酸载液中,测得对AP的峰电流与其浓度在2.0×10-7mol/L~2.0×10-4mol/L范围内呈良好的线性关系(r=0.9986,n=13),检出限为9.4×10-8mol/L。连续测定1.00×10-4mol/L的AP溶液20次,电流值RSD为1.90%,进样频率为80样/h。  相似文献   

6.
纳米铜修饰玻碳电极的制备及其对葡萄糖的催化氧化   总被引:3,自引:1,他引:2  
在表面活性剂十六烷基三甲基溴化铵(CTMAB)的分散作用下,通过恒电位还原CuSO4在玻碳电极上沉积Cu,得到纳米Cu修饰玻碳电极(nano-Cu-GCE),该修饰电极对葡萄糖(Glu)的氧化具有明显的催化作用,利用该催化作用对Glu进行检测,通过研究沉积电位、沉积时间以及检测电位对电流信号的影响,优化了电极的制备条件和Glu的检测条件。沉积电位为-100mV,沉积时间8min。在检测电位400mV下,Glu在1.0×10-6~3.9×10-4mol/L范围内Glu电流与空白溶液电流值之差与其浓度呈线性关系,检出限为2.6×10-7mol/L(S/N=3),线性回归方程Δi(μA)=-1.02-125674.54C(mol/L),r=0.9981。抗坏血酸(AA)、对乙酰氨基酚(AP)和L-半胱氨酸(Cys)对Glu信号几乎无干扰。  相似文献   

7.
[LCu]:biPy/GC电极对L-半胱氨酸(L-Cys)具有良好的电催化氧化作用,催化电流(Ipm)与L-Cys浓度(C)在1×1013到300 mmol-L-1范围内呈线性关系,相关系数0.9996,检出下限达5×10~mol·L-1.  相似文献   

8.
将纳米金(NG)电沉积在有序介孔碳(OMC)修饰玻碳电极表面,并将L-半胱氨酸(L-Cys)自组装至OM C/NG修饰电极表面,制备了OM C/NG/L-Cys修饰电极。采用透射电子显微镜考察了OM C的结构,扫描电子显微镜研究了OMC/NG/L-Cys修饰电极的表面形貌。考察了Cu2+在该修饰电极上的电化学行为,优化了Cu2+的测定条件。在最优条件下,溶出峰峰电流与Cu2+浓度在0.05~6.0μmol/L范围内呈良好线性关系,检出限为0.03μmol/L(S/N=3)。方法用于河水样品分析,其加标回收率在92.7%~101.6%之间。  相似文献   

9.
利用Shifft碱反应将L-半胱氨酸和5-甲酰基-8-羟基喹啉一步合成L-(8-羟基-5-甲基喹啉)半胱氨酸,通过金-硫键将L-(8-羟基-5-甲基喹啉)半胱氨酸自组装到金电极表面制备L-(8-羟基-5-甲基喹啉)修饰金电极。L-(8-羟基-5-甲基喹啉)半胱氨酸分子中的羟基氧和氮可与Hg2+形成稳定的五元环配合物,因此该修饰电极能选择性吸附Hg2+,结合方波伏安法用于Hg2+电化学检测。在0.01mol/L HCl中,富集时间为160s,Hg2+浓度在1.0×10-9~1.0×10-8 mol/L、1.0×10-8~1.0×10-7 mol/L浓度范围内与方波伏安峰电流分段呈现良好的线性关系,检出限为0.92×10-9 mol/L。  相似文献   

10.
利用L-半胱氨酸自组装膜修饰金电极(L-Cys,Au/SAMs), 在0.05mol/L H_2SO_4 底液中研究了 Na_2SeO_3 的电化学特性.在0.00~1.30 V (vs. SCE) 电位范围内对微量Na_2SeO_3进行循环伏安扫描,发现L-Cys, Au/SAMs修饰电极在峰电位0.89 V处有灵敏的Se的氧化溶出峰.通过比较裸金电极和修饰电极在Na_2SeO_3 溶液中的电化学特性发现,修饰电极通过巯基中的S与Na_2SeO_3发生氧化还原作用生成Se,且修饰电极对沉积在电极表面的Se的氧化过程具有催化作用.根据Na_2SeO_3在单分子膜上的电化学行为,提出了单分子膜中硫(Au-S)与Se(Ⅳ)作用生成Se的反应机理、Se电化学催化氧化机理及巯基化合物通过生成纳米硒生物吸收Se的类生物膜模型.  相似文献   

11.
通过静电组装技术在碳圆盘电极(PGE)表面制备{聚二烯丙基二甲基氯化铵(PDDA)/多壁碳纳米管(MWCNT)}n/PDDA多膜,并采用循环伏安法在多膜表面电化学修饰一磷钼酸(PMo12)膜,构筑PGE/{PDDA/MWNTs}5/PDDA/PMo12复合膜修饰电极,研究该复合膜修饰电极电化学及其对溴酸盐(BrO3-)电催化还原性质.在此基础上建立毛细管电泳-PGE/{PDDA/MWNTs}5/PDDA/PMo12修饰电极电化学检法定饮用水中溴酸盐分析新方法.在优化实验条件下,电泳峰面积与溴酸根浓度在5.0×10-8~5.0×10-5mol/L范围内呈良好性关系(r=0.9954),检出为2.0×10-8mol/L(S/N=3).  相似文献   

12.
将单(6-巯基-6-去氧)-β-环糊精(HS-β-CD)通过金硫键自组装在金电极(GE)表面, 构建了一种简单、 快速、 灵敏的超分子识别L-半胱氨酸(L-Cys)的电位型电化学传感器. 通过循环伏安法和交流阻抗法研究了膜表面的电化学行为; 通过扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表征了电极表面的膜组装效果, 其作用机制是固定在金电极表面的HS-β-CD空穴可通过分子间作用力吸附结合带负电的L-Cys, 使电极表面的膜电位发生改变, 导致对L-Cys的超分子选择性识别作用, 从而实现对L-Cys的定量分析. 在优化的实验条件下, 该电极在pH=6.0的磷酸盐缓冲溶液中对L-Cys有良好的电位响应性能, 线性范围为1.0×10 -7~1.0×10 -4 mol/L, 斜率为(-65.29±1.0) mV/pc(25 ℃), 检测下限达到6.0×10 -8 mol/L; 电极响应速度快、 稳定性和重现性好、 抗干扰能力强. 将该电极用于实际猪血清和猪尿液样品中L-Cys含量的测定, 回收率为95.0%~104.7%, 表明该新型电极在生命科学等领域具有良好的应用前景.  相似文献   

13.
利用配对试剂将二茂铁酰胺键合在L-半胱氨酸自组装单层膜(SAM)表面, 制成稳定的二茂铁/L-半胱氨酸修饰电极, 该电极在pH 7.0的磷酸盐缓冲液中有一对很好的氧化还原峰. 运用循环伏安法和交流阻抗谱详细研究了修饰电极的电化学行为, 测得电子转移系数为0.66, 表观电极反应速率常数为6.86 s-1. 该修饰电极对肾上腺素有很好的催化作用, 峰电流与肾上腺素浓度在2.0×10-7~1.0×10-5 mol·dm-3范围内呈现良好的线性关系.  相似文献   

14.
采用滴涂法将氧化锌纳米颗粒滴涂在自制铅笔芯电极上制成氧化锌修饰铅笔芯电极,当以过硫酸根为共反应剂时,该修饰电极在氢氧化钠溶液中具有良好的电致化学发光(ECL)行为,对其发光机理进行了考察。基于苯酚对该修饰电极的ECL具有抑制作用,建立了一种测量苯酚的新方法,当苯酚浓度为2×10~(-8)~2×10~(-6)mol/L时,发光强度与苯酚浓度的对数呈线性关系,检出限为1×10~(-8)mol/L。该方法具有灵敏度高、方法简单、快速、稳定性好等优点,将其应用于工业废水中苯酚浓度的检测,回收率为96.5%~104.5%。  相似文献   

15.
利用荷叶萃取液生物合成纳米金,并与多壁碳纳米管/L-半胱氨酸复合成修饰电极材料,研究了左旋多巴在该修饰电极上的电化学行为.在0.2 mol/L乙酸-乙酸钠体系(pH=2.6)中,氧化峰电流与左旋多巴浓度在0.6~40μmol/L及60~120μmol/L范围内呈良好的线性关系,检出限达5.2×10-8mol/L.实验结果表明,生物合成纳米金复合多壁碳纳米管/L-半胱氨酸修饰电极具有良好的稳定性和高灵敏度,对实际样品测定的回收率在91.2%~102.5%之间.  相似文献   

16.
借助量子化学计算, 从分子层面模拟了γ-环糊精(γ-CD)主体与L-半胱氨酸(L-Cys)氧化产物客体之间的超分子相互作用, 得到γ-CD与L-Cys氧化产物之间的弱相互作用能EL(-12.6 eV), 其与D-Cys氧化产物客体的弱相互作用能(ED=-2.7 eV)相差3.7倍, 分子内氢键键价相差近1倍. 据此, 构建了基于手性源γ-环糊精的阻抗型传感器, 并用于L-Cys的阻抗识别. 结果表明, 以铁氰化钾(Ⅱ/Ⅲ)作为氧化还原探针分子, 电化学阻抗信号变量(Ret)与L-Cys浓度在0.1~1.0 μmol/L(阶段一)和1.0~6.0 μmol/L(阶段二)2个范围内分别呈现良好的线性关系, 检出限为74 nmol/L(S/N=3). 与未修饰玻碳电极相比, L-Cys在该手性传感器上的阻抗响应灵敏度提高了约19倍, 对含巯基结构相似物的选择性明显提高; 将该传感器应用于人体血清、 药品胶囊样品的分析, 平均回收率在88.9%~108%之间. 建立了一种新颖、 低成本、 简便的针对弱电活性手性化合物的定量识别方法, 为其电化学分析提供了新策略.  相似文献   

17.
构建了不同百分含量的氮掺杂的多壁碳纳米管化学修饰石墨电极,利用线性扫描伏安法及循环伏安法研究了双酚A(BPA)在修饰电极上的电化学行为。提出了一种灵敏、简便的直接检测双酚A的电化学分析方法。在pH6.98的PBS缓冲溶液中,在电位0.20 V富集后,该修饰电极在0.680 V出现一个灵敏的、峰形好的氧化峰。表明氮掺杂多壁碳纳米管薄膜对双酚A的氧化表现出一定的催化作用,能显著提高双酚A的氧化峰电流。在优化条件下,采用线性扫描伏安法对双酚A进行测定。双酚A的氧化峰电流与其浓度在2.5×10-7~1.0×10-4 mol/L之间有很好的线性关系(R为0.996),检出限为5.0×10-8mol/L。电极已初步用于实际样品中BPA的测定。  相似文献   

18.
A novel method for fabricating a nanoarray electrode combining the template technique with the self-assembled approach was developed. The glassy carbon electrode was modified with the Au nanoarray using micropores of aluminum anodic film as template. Then, the Au nanoarray electrode was self-assembled with L-cysteine (L-Cys) and gold colloid, respectively. In order to evaluate the electrochemical characteristics of L-Cys–Au colloid self-assembled nanoarray electrode, was chosen as molecule probe and cyclic voltammetry was used. In addition, the functional nanoarray electrode was applied to measuring dopamine (DA). The resulting L-Cys–Au colloid self-assembled nanoarray electrode demonstrated that the linear calibration range extended over three orders of magnitude of DA concentrations (1.0 × 10−9–1.0 × 10−6 mol/L) and the detection limit was 5.0 × 10−10 mol/L.  相似文献   

19.
In this paper, for the first time, electroactivated disposable pencil graphite electrode (ePGE) was used for the detection of bioflavonoid hesperidin with cyclic and differential pulse voltammetry. The electroactivation efficiency of the pencil graphite electrode (PGE) was examined employing electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) and the enhancement of electron transfer kinetics of the PGE after the electroactivation was found. Hesperidin is irreversibly oxidized on the ePGE and its oxidation was the most pronounced at pH=5.0. Two electrode processes were detected, on one hand, a mixed diffusion and adsorption control was observed for the first electrode process. On the other hand, only diffusion control was observed in the second electrode process. Linear dependence between the peak current and the hesperidin concentration was obtained in the concentration range from 5×10−7 mol dm−3 to 1×10−5 mol dm−3 and the determined lower limit of detection (LOD) was 2×10−7 mol dm−3. Moreover, hesperidin in pharmaceutical formulation (containing active substance, hesperidin, and excipients) was quantified using ePGE. A good correlation was obtained between experimentally obtained hesperidin concentration by voltammetric analysis and concentration determined by standard HPLC technique (R2=0.9462).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号