首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal degradation of PVC treated with alkylaluminum compounds has been studied. Four PVC samples of different molecular weights have been treated with Me3Al, and Et3A1, and the dehydrochlorination rates of the polymers were determined at 190 and 220°C under a nitrogen atmosphere. The alkylaluminum-treated low molecular weight samples show marked increase in thermal stability, i. e., slower rate of dehydrochlorination right from the beginning of degradation, whereas with the higher molecular weight samples stabilization becomes pronounced only after a few percent of dehydrochlorination. The color of R3Al-treated samples was much lighter (yellowish) than those of controls (dark brown) at 1% HCl loss. The average polyene sequence lengths formed during the early stages of dehydrochlorination are found to be much shorter with RsAl-treated PVC than with virgin samples. It appears as though polyene sequences which arose by zipping- initiation from allylic and/or tertiary chlorine sites are longer than those which form by random initiation along the chain. The autocatalytic (i. e., HC1-catalyzed) dehydrochlorination observed with virgin PVC disappears after treatment with R3A1. The HCl-catalyzed dehydrochlorination is minimized when thin films are used instead of powdery samples, which may be due to higher rates of HC1 diffusion through thin films. Autocatalysis of dehydrochlorination is affected by the concentrations of double bonds and HCl and the length of polyene sequences. Interaction between polyenes and HC1 by hydrogen transfer may lead to the re-initiation of unzipping, thus lengthening the polyene sequences.  相似文献   

2.
Thermal and thermo-oxidative degradation of poly(vinyl chloride)s (PVCs) containing increased concentrations of allylic chlorines, PVC(A)s, prepared by controlled chemical dehydrochlorination with potassium-t-butoxide (t-BuOK) have been studied. The introduction of small amounts of internal allylic chlorines into PVC significantly decreases the thermal and thermo-oxidative stability of the resin. A linear relationship exists between the initial rates (VHCl)0 of thermal and thermooxidative dehydrochlorination of solid PVC(A)s and the concentration S of internal allylic chlorines. Both the slope and the intercept of the thermo-oxidative (VHCl)0 vs. S plot are higher in oxygen than those obtained in nitrogen at the same temperature; this finding is attributed to fast oxidation of polyenes, and to peroxy radicals formed during polyene oxidation, which initiate subsequent HCl loss by attacking normal repeat units in PVC. The extent of HCl loss as a function of time during thermal degradation of PVC(A)s in intert solvent shows a rapid initial phase followed by a slower stationary phase. The first phase is due to dehydrochlorination involving the labile chlorines, while the stationary phase indicates random initiation of HCl loss at normal? CH2? CHCl? repeat units. Initial rates of HCl loss increase with S, while the rates of HCl loss during the stationary phase are independent of S. The rate constant of initiation of HCl loss at internal allylic chlorines is almost four orders of magnitude higher than that of random initiation; however, the former is still orders of magnitude lower than that of chain propagation. Quantitative analysis of UV-visible spectra of PVC(A)s degraded in solution suggests geometric polyene distribution. The average length of polyenes decreases as the extent of HCl loss increases and reaches a constant value of ca. 3 at ca. 1% HCl loss for all the investigated PVC(A) samples.  相似文献   

3.
Stabilization of polyvinyl chloride) (PVC) containing metal soaps was investigated by psychophysical colorimetry. A color difference observed among heated PVC films containing various metal salts depends on coloration of the π-complex of polyene with metal chloride converted from the metal salt added and that the stabilization effect of synergistic soaps should be based on an effect of complementary colors set up among a polyene color and metal chloride-polyene complex colors. These conclusions are well supported by colorimetry of heated PVC films containing various dyes. The color of heated PVC films containing Zn/Ca and Cd/Ba synergetic soaps markedly deviated from a polyene color with increased heat treatments, owing to greater degree of coloration of Zn complex and Cd complex, respectively. These color deviations usually decrease the thermal stability of PVC. The thermal stability of PVC was markedly improved by the use of synergetic soaps together with masking agent such as triethanolamine, urea, N,N′-dimethylol-urea, and vinylpyridine-methylmethacrylate copolymer, owing to the masking effect of these nitrogen-containing compounds. These masking agents did not slow down the dehydrochlorination of PVC.  相似文献   

4.
Investigations were made on the effects of zinc and calcium carboxylates, polyols and other oxygen-containing compounds, nitrogen- and sulphur-containing compounds and of mixtures of zinc calcium carboxylates, zinc carboxylates-complexing agent, calcium carboxylate-complexing agent and of zinc carboxylate-calcium carboxylate-complexing agent upon the rate of dehydrochlorination and crosslinking and on the absorption spectrum of PVC during degradation in vacuum at 180°. The interaction of the stabilizers with 2-chlorobutane (a model for normal units of PVC) was studied at 180°. It was shown that, in the thermal degradation of PVC, zinc carboxylates give synergistic mixtures with compounds having -OH, -SH or -NH groups. In the thermal degradation of PVC in the presence of mixtures of zinc carboxylates with polyols, there are exchanges between chloro-containing groups of PVC and carboxylic groups of salt and alcohol residue. Zinc salts also catalyze the interaction of polyols with double (particularly conjugated double) bonds of degraded PVC. The investigated compounds do not form synergistic mixtures with calcium carboxylates. The triple mixtures of zinc and calcium carboxylates with complexing agents are more effective stabilizers of PVC than the binary mixtures zinc carboxylate-calcium carboxylate and zinc carboxylate-complexing agent. The mechanism of synergistic interaction in PVC stabilization by these mixtures are discussed.  相似文献   

5.
Quantum yields of dehydrochlorination and of main chain scission were determined for photolysis of PVC in solution in tetrahydrofuran and 1,2-dichloroethane. The observed auto-accelerated degradation results from an increased absorption of light by the growing polyene structures. The presence of oxygen enhances the efficiency of dehydrochlorination, chain scission and crosslinking processes. From the constant quantum yields, it is inferred that energy transfer occurs from the absorbing polyenes and that initially present unsaturations are responsible for initiation of the degradation.  相似文献   

6.
Based on experimental results on the kinetic zip length of polyene formation and on the polyene distribution in degraded PVC it is deduced, using quantitative model conceptions, that both the configuration and the conformation of the PVC macromolecule may influence the initiation, propagation and termination of thermal dehydrochlorination. In this way it is possible to explain the low ‘basic’ stability of PVC as being determined by the tacticity.  相似文献   

7.
PVC has been cyclopentadienylated by two conventional basic, LiCp and NaCp, and a new acidic, Me2CpAl, cyclopentadienylating agent. PVCs treated with basic cyclopentadienylating agents undergo severe random dehydrochlorination and exhibit a significant decrease in thermal and thermooxidative stability. In contrast, according to ozonization and degradation experiments, Me2CpAl does not cause dehydrochlorination during cyclopentadienylation. The thermal stability of PVC treated with relatively high concentrations of Me2CpAl and Me3Al at 25°C markedly increases due to substitution of labile chlorines in PVC with methyl groups. Initial thermal dehydrochlorination behavior of virgin PVC and samples treated with Me2CpAl at ?30°C are similar. In contrast, thermooxidative stability decreases on Me2CpAl treatment at ?30°C; this is attributed to ease of oxidation of pendant cyclopentadienyl groups; that is, the formation of peroxy radicals that may initiate dehydrochlorination by attacking unchanged repeat units in PVC. Acceleration of thermal dehydrochlorination disappears and the length of polyene sequences is reduced on Me2CpAl and Me3Al treatment. These observations are attributed to differences in rates of protonation-deprotonation; that is, rates of reinitation of zipping of treated and untreated PVCs during thermal degration. The effect of traces of aluminum residues on degradation of modified PVCs, however, cannot be neglected.  相似文献   

8.
From previous investigations of the alkaline dehydrochlorination of PVC it is well known that polyene sequences are formed. In this paper the true overall kinetics of the dehydrochlorination reaction between PVC and alcoholic KOH in tetrahydrofuran solution was studied at 9.5°C by measuring the rate of disappearance of KOH. Titrations of the hydroxide ions consumed and the chloride ions evolved showed close agreement. IR spectra of the samples did not show any evidence of substitution by hydroxide ions. Small amounts of DMSO present in the solvent were found to increase the reaction rate markedly. The kinetic scheme was discussed and the first rate constant was determined. Preliminary results of reactions of the polyene sequences with various reagents are presented. These reactions were made in order to introduce new functional groups into the PVC chains.  相似文献   

9.
Investigation was made on the effects of mixtures of organic phosphites (tributyl-, trioctyl-, diphenylisooctyl) with isocyanates (triethyl-, tributyl-, triphenyl-, tribenzyltin) upon the rate of dehydrochlorination and crosslinking, and on the absorption spectrum of PVC during degradation in evacuated ampoules at 180°. The effectiveness of stabilizing action of these synergistic mixtures depends on the chemical structures of both phosphite and isocyanate. The activity of isocyanates in mixtures with phosphites decreases in the order: Bz3SnNCO, Ph3SnNCO > Bu3SnNCO > Et3SnNCO. At 180°. triphenyltin isocyanate decomposes with formation of tetraphenyltin and diphenyltin diisocyanate; parallel with disproportionation, decarboxylation of triphenyltin isocyanate occurs, during which carbon dioxide and N,N′-bis(triphenyltin)carbodiimide are generated. N,N′-bis(triphenyltin)carbodiimide is a stabilizer for PVC in thermal degradation and gives synergistic mixtures with organic phosphites.  相似文献   

10.
Phosphines are inhibitors of thermal degradation of 4-chloro-2-hexene because they form strong complexes with either HCl or ZnCl2, which cause catalysis of the dehydrochlorination. Aliphatic phosphines are more efficient than aromatic phosphines. Aliphatic phosphites also act as stabilizers; they react with HCl, and may be substituted for allylic chlorine in the presence of ZnCl2 as catalyst; the resulting phosphonate may be destroyed by HCl if phosphite is not in excess. Aromatic phosphites do not react at 60°; they only form a complex with HCl and, in the presence of ZnCl2, they cause an increase of the dehydrochlorination rate. This effect is due to the reverse reaction, catalysed by a complex HCl-hexadiene, being slowed down because of the competing phosphite-HCl complex.  相似文献   

11.
Graft copolymers prepared by mastication of PVC in the presence of styrene or of a styrene/ methyl methacrylate mixture, have been studied by thermogravimetry, estimation of hydrogen chloride, thermal volatilization analysis, and flash pyrolysis/g.l.c. The degradation behaviour of PVC/ polystyrene mixtures, vinyl chloride/styrene random copolymers, a random copolymer of methyl methacrylate and styrene, and PVC/poly-α-methylstyrene mixtures has also been studied. The graft copolymers resemble the PVC/methacrylate graft copolymers previously studied in showing retardation of the dehydrochlorination reaction, but contrast with them in yielding chain fragments but no monomer during HCl production. Some stabilization of the second component at higher temperatures is also found. PVC/polystyrene mixtures behave in the same way as the corresponding graft copolymers, but vinyl chloride/styrene copolymers show reduced stability towards both dehydrochlorination and monomer production compared with the homopolymers. PVC/poly-α-methylstyrene mixtures yield some monomer concurrently with HCl loss, and display marked retardation of the latter reaction. Stabilization of the second polymer at higher temperatures is again observed. Many of these results add further strong support to the view that chlorine atoms are involved as chain carriers in the thermal dehydrochlorination of PVC.  相似文献   

12.
Spectra of vinyl chloride—propylene copolymers irradiated at low temperature in vacuum have been obtained at selected temperatures in the range 130–335°K. Copolymers and PVC homopolymer pass through identical intermediate states of dehydrochlorination in which alkyl, allyl, and polyenyl radicals are observed. Substantial spectral differences between copolymers and PVC appearing in the final states of dehydrochlorination after warming above room temperature are consistent with shorter average polyene lengths in the copolymers. This probably results from termination of polyene growth by propylene comonomer. Spectral differences at long wavelength between copolymers with varying amounts of propylene are minor compared to the basic changes between copolymer and homopolymer.  相似文献   

13.
The binary radical copolymerization of acrylic acid amides (acrylamide and N-cyclohexen-1-ylacrylamide) with alkenyl halides (vinyl chloride, vinyl bromide, and allyl chloride) has been studied. The constants of relative activity of the monomers used are calculated. For the systems under investigation, the occurrence of dehydrochlorination of a polymer chain and protonation of a carbonyl group occur is confirmed. Allyl chloride shows the most pronounced tendency toward dehydrochlorination, while in the case of vinyl chloride, this tendency is the least distinct. The polymer-analogous transformations result in copolymers containing polyene fragments and units of ammonium or oxonium amide salts.  相似文献   

14.
The thermo non-oxidative degradation of PVC and the effects of alkaline earth metal (Be, Mg, Ca, Ba) stearates were studied by thermogravimetry in the temperature range 150 to 500°C. The alkaline earth metal stearates were observed effectively reduce the dehydrochlorination of PVC. The synergistic effects of combinations of these salts with lead stearate were also studied and are discussed. Kinetic parameters such as the activation energy, order of reaction and Arrhenius factor were calculated by the Coats and Horowitz methods. The results showed that these metal stearates increase the activation energy required for the dehydrochlorination of PVC.  相似文献   

15.
A high-quality polyene can be obtained by exensive dehydrochlorination of poly(vinyl chloride) (PVC) in aliquid/solid two-phase system. The liquid phase is a tetrahydrofuran solution of PVC containing a small amount ofpoly(ethylene glycol) with molar mass of 400 g as a phase transfer catalys. The solid phase is potassium hydroxide particles.The structure of the polyene is polyacetylene-like and has a long conjugated C=C sequence and a narrow dispersity ofpolyene sequences according to its FT-infrared and Raman spectra. The environmental stability of the polyene was alsostudied by IR, Raman spectra and elemental analysis. Experimental results demonstrated that the polyene was susceptible toair and could be changed into a material containing high concentrations of hydroxyl and carbonyl groups. The polyenesequences were shortened and its dispersity became broader due to the effect of dioxygen.  相似文献   

16.
In situ degradation of poly(vinyl chloride)/poly (N-vinyl-2- pyrrolidone) (PVC/PVP) blends has been studied by Fourier-transform Raman spectroscopy. PVP acts as a destabilizer in the thermal degradation of PVC as manifested by the reduction of temperature for the onset of degradation and the time the polymer is held at a particular temperature for this onset. Increasing the amount of PVP in the blends decreases the dehydrochlorination temperature and time. In blends containing high PVP concentrations, polyene bands dominate over nondegraded PVC bands. Maximum polyene lengths of around 35 were achieved. High PVP ratios and prolonged degradation at higher temperatures resulted in a decrease in mean polyene length due to crosslinking and oxidative scission.  相似文献   

17.
Poly(viny1 chloride) (PVC) was dehydrochlorinated thermally in pyridine solution under N2 atmosphere and the effect of variation of reaction time, temperature, and concentration of PVC in pyridine was studied. The extent of dehydrochlorination (or conversion, x%) increases with an increase in reaction time and temperature, and with a decrease in the concentration of PVC. Incomplete precipitation of dehydrochlorinated PVC (DHPVC) occurs by nonsolvent (methanol). During dehydrochlorination there is no HCl evolution as it forms a pyridine hydrochloride complex which is supposed to act as a catalyst for dehydrochlorination. A possible mechanism has been proposed. Chain scission and cross-linking reactions are responsible for the molecular weight changes that take place during the reaction.  相似文献   

18.
We investigated complete dehydrochlorination of PVC by t. BuOK in THF under inert conditions. We observed a modification of macromolecular chains giving three distributions studied by GPC with online u.v. spectroscopic analysis of eluted macromolecules. At low conversion rate, polyene macromolecules appear at the same degree of polymerisation as PVC. At higher conversion, much heavier products are formed and the polyene sequences are longer and do not change with conversion, on the other hand, scission products appear with comparable unsaturation but with very low molecular masses.  相似文献   

19.
The dehydrochlorination of different samples of PVC under vacuum with continuous removal of HCl by freezing, has been studied at 180–210°C. The comparison of the kinetic curves of the dehydrochlorination of various samples of PVC which were obtained by us and other investigators, with the theoretical curves for the thermal degradation of idealized PVC in the absence of HCl has been carried out. This had made it possible to evaluate the influence of unstable fragments present in the original polymer on the initial rate of PVC degradation quantitatively. It has been shown that the distinction between the stationary rates of the dehydrochlorination of various samples of PVC is determined by the difference of the values of the average length of dehydrochlorination chain, lav. The most probable interval of the values of lav has been ascertained to be 4–12. It is established that the most probable value of the constant of the rate of dehydrochlorination of normal links of PVC, k0, is 2.1 × 10?7?2.5 × 10?7 s?1 at 200°C. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
To obtain double bonds in PVC, copolymerizations of vinyl chloride (VC) with phenylacetylene (PA) and dimethylester of 2-butyne dioic acid (ADCE) were carried out. Copolymer compositions, as measured by i.r., were compared with ozonolytically evaluated chain scission numbers. Only the PA-units seemed to be incorporated at random in the PVC-chain. Phenyl groups conjugated to the double bonds led to a striking increase in thermal dehydrochlorination. Ozonolysis on degraded PVC samples provides insight into the mechanism of the dehydrochlorination, revealing the formation of additional unsaturated sites after degradation and permitting the estimation of average polyene sequence lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号