首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
拉曼光谱技术在色谱分析检测中的应用   总被引:1,自引:0,他引:1  
讨论了色谱分离与拉曼光谱检测的联用技术。表面增强拉曼光谱技术和紫外共振拉曼光谱技术克服了常规拉曼光谱技术所固有的灵敏度低的问题,所设计的与液相色谱联用的装置可以获取色谱柱流出液的拉曼光谱。评价了联用装置的重现性、动态范围和分析潜力,发现表面增强拉曼光谱仪和紫外共振拉曼光谱仪都可以作为薄层色谱、液相色谱法的检测器,可提供待测组分的结构信息,其灵敏度和其它常用检测器相似。  相似文献   

2.
以5,5'-二硫代双(琥珀酰亚氨基-2-硝基苯甲酸)(DSNB)分子作为偶联剂将蛋白质结合在金纳米粒子表面,既保持了蛋白质的生物活性,同时DSNB分子又具有较高的表面增强拉曼散射(SERS)活性,可作为蛋白质定量分析的探针分子.选用生物素与亲和素的特异性识别以及抗原抗体的免疫识别2个生物反应体系,将SERS纳米探针固定在蛋白质检测芯片上.以硅片为蛋白质检测载体,利用硅片在520 cm-1处的拉曼特征峰为内标,对人Ig G抗体进行定量分析.结果表明,该探针对人Ig G抗体检测的最低浓度可以达到5 pg/m L.  相似文献   

3.
多巴胺缺乏是导致帕金森疾病临床症状的主要原因。为有效检测分析多巴胺分子,本文通过磁控溅射技术制备了一种具有纳米岛状结构的银薄膜,使用无机碱性双氧水作为清洁还原剂,还原制备了一种毛胆状多纳米针尖的金纳米结构,并将纳米岛状结构的银薄膜和毛胆状多纳米针尖的金纳米结构作为表面增强拉曼散射(SERS)基底。通过银膜承载多巴胺分子,并滴加覆盖毛胆状多针尖的金纳米结构,利用具有高粗糙度的银膜表面与金纳米针尖异质结构形成的界面"热点",有效增强多巴胺分子的拉曼散射信号,并在尿液样品中实现多巴胺分子的传感检测。本研究构建的银膜@金纳米针尖表面增强拉曼散射传感界面,对于生物标志物分子的检测具有灵敏度高和抗干扰能力强的优势。  相似文献   

4.
纳米颗粒作为信号感应单元在化学与生物传感应用中已引起广泛关注,这些功能和金属纳米结构与光相互作用时产生的表面等离子体共振密切相关.表面增强拉曼散射(SERS),是指吸附在粗糙的金属纳米结构表面的被分析物,在光照射下其拉曼光谱获得显著增强的异常表面光学现象,近年来.SERS技术已广泛用于物质检测和生物传感等研究,在生物医学领域表现出巨大的应用潜力并取得了令人瞩目的研究成果.本文阐述了金纳米棒的制备方法、表面修饰和共轭生物分子的方法.并从金纳米棒表面增强拉曼散射的角度系统阐述基于金纳米棒表面增强拉曼散射的1D,2D,3D自组装,并介绍了近期金纳米棒表面增强拉曼散射在生物医学检测与成像中最具有代表性的应用研究.  相似文献   

5.
将常规免疫组织化学法与表面增强拉曼散射光谱(SERS)结合,建立了一种简便、快速测定大鼠脑组织中神经元特异性骨架蛋白的新方法.将所制备的SERS免疫胶体金标签加入至大鼠脑组织冰冻切片,研究了经免疫识别后组织的SERS光谱,在脑组织切片中得到了探针分子对巯基苯甲酸(MBA)的特征峰(1076,1589 cm-1).对比了不同浓度抗体对SERS信号及免疫组化染色的影响,结果表明,与传统的免疫组化法相比,SERS法可以简化步骤,缩短实验时间,同时展现出更高的检测灵敏度和选择性.  相似文献   

6.
正表面增强拉曼散射(surface enhanced Raman scattering,SERS)光谱技术作为一种具有超高灵敏度的分子"指纹谱"识别技术,已被广泛应用于表面、界面研究、吸附物界面的物化性质研究、生物大分子的界面取向及构型、构象研究和结构  相似文献   

7.
葛明  鲍芳  姚建林  孙如  顾仁敖 《化学学报》2009,67(20):2285-2289
作为一种新型的免疫检测方法, 表面增强拉曼光谱(SERS)技术被应用于标记免疫多组分检测. 以多种不同的标记分子(苯硫酚, 联吡啶类分子, 氰基吡啶类分子)分别标记多种不同免疫金溶胶, 通过抗体抗原之间所具有的特异吸附性, 进一步组装“固相抗体-待测抗原-标记免疫金溶胶”多组分三明治复合体系. 利用表面增强拉曼光谱谱峰较窄, 具有较强的分辨率及高灵敏度的特点, 对多种标记分子特征谱峰进行分析判断, 从而识别所加入的多种抗原, 实现SERS标记免疫多组分同时检测的目的, 并对其中氰基吡啶类分子的吸附进行了探讨.  相似文献   

8.
胡娟  张春阳 《化学进展》2010,22(8):1641-1647
表面增强拉曼散射(SERS)是一种基于拉曼散射原理识别生物及化学分子的分析方法。SERS具有灵敏度高、水干扰小、分辨率高、稳定性好等优点,广泛应用于生物分析和生物医学研究领域。近年来,SERS技术在基因分析领域得到迅速的发展,成为国内外研究的热点。本文对应用于基因分析的一些最新SERS技术(包括基因的免标记检测和标记检测)进行较为全面的综述,着重介绍了免标记检测中基于金属纳米粒子和针尖增强拉曼散射的SERS技术,标记检测中基于拉曼活性物、PCR技术、分子信标、基底和标记物的SERS信号放大技术,并概括了基因多组分检测技术及SERS技术的应用前景。  相似文献   

9.
SERS标记纳米粒子用于免疫识别   总被引:4,自引:1,他引:3  
激光拉曼光谱技术近年来已成为研究生物分子结构常用的光谱手段.尤其在研究水溶液中蛋白质的结构和构象方面发挥了重要作用.然而,常规拉曼光谱的信号强度很低,限制了其在各个领域中的应用.表面增强拉曼光谱(SERS)和表面增强共振拉曼光谱(SERRS)技术可使信号增强6~10个数量级,尤其是SERS技术已发展到检测单分子的水平,更为其在生物方面的应用开拓了新的局.  相似文献   

10.
表面等离子共振(SPR)近年来迅速发展为用于分析生物分子相互作用的一项技术.该技术无需标记、特异性强、灵敏度高、样品用量小,可实现在线连续实时检测.目前SPR已被广泛应用于免疫学、蛋白质组学、药物筛选、细胞信号转导、受体/配体垂钓等领域.该文阐述了基于表面等离子体共振技术生物传感器的基本原理和技术流程,综述了SPR在蛋白质-蛋白质相互作用动力学研究、蛋白质结构及功能研究、蛋白质突变和碎片分析、信号转导中的应用以及SPR在蛋白质-蛋白质相互作用研究中的多项关键技术.指出SPR通过与光谱、电化学等多技术联用后,可以获得更加详实的信息.  相似文献   

11.
Malondialdehyde (MDA) is a biomarker of lipid peroxidation that has been widely associated with food rancidity as well as many human diseases. Most current MDA detection methods involve MDA reaction with thiobarbituric acid (TBA), followed by UV-visible and/or fluorescence detection of high-performance liquid chromatography (HPLC)-separated TBA-MDA. Herein, we report the first proof-of-concept study of surface-enhanced Raman detection of a TBA-MDA adduct using silver nanoparticles as the SERS substrate and the 632.8 nm HeNe laser as a Raman excitation source. Current SERS detection limit of TBA-MDA is 0.45 nM, ~100 times higher than the 36 nM fluorescence sensitivity recently reported with the HPLC-purified TBA-MDA. Molecular specificity of the SERS technique was studied by comparing the SERS spectrum of TBA-MDA with those acquired with TBA adducts of other TBA-reactive compounds (TBARCs) that includes formaldehyde, acetaldehyde, butyraldehyde, trans-2-hexenal, and pyrimidine. Compared to TBA and TBA adducts with those TBARCs, the SERS activity of TBA-MDA adduct is significantly higher. The possibility of direct SERS detection of TBA-MDA in a reaction mixture (without HPLC separation) has also been investigated.  相似文献   

12.
M Lee  K Lee  KH Kim  KW Oh  J Choo 《Lab on a chip》2012,12(19):3720-3727
Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow gold nanospheres (HGNs) as SERS agents because of their highly sensitive and reproducible characteristics. The utility of this platform was demonstrated by the quantitative immunoassay of alpha-fetoprotein (AFP) model protein marker. Our proposed SERS-based immunoassay platform has many advantages over other previously reported SERS immunoassay methods. The tedious manual dilution process of repetitive pipetting and inaccurate dilution is eliminated with this process because various concentrations of biomarker are automatically generated by microfluidic gradient generators with N cascade-mixing stages. The total assay time from serial dilution to SERS detection takes less than 60 min because all of the experimental conditions for the formation and detection of immunocomplexes can be automatically controlled inside the exquisitely designed microfluidic channel. Thus, this novel SERS-based microfluidic assay technique is expected to be a powerful clinical tool for fast and sensitive cancer marker detection.  相似文献   

13.
Immunoassay has been an essential tool in many areas, including clinical diagnostics. However, it suffers from drawbacks, such as poor availability of high specificity antibodies, limited stability of biological reagents, as well as damage to health and susceptibility of chemical labels to the sample environment. Here we present a new approach, a boronate‐affinity sandwich assay (BASA), for the specific and sensitive determination of trace glycoproteins in complex samples. BASA relies on the formation of sandwiches between boronate‐affinity molecularly imprinted polymers (MIPs), target glycoproteins, and boronate‐affinity surface‐enhanced Raman scattering (SERS) probes. The MIP ensures the specificity, while the SERS detection provides the sensitivity. BASA overcomes the drawbacks of traditional immunoassays and offers a great prospect for application.  相似文献   

14.
Cheng HW  Huan SY  Yu RQ 《The Analyst》2012,137(16):3601-3608
The development of ultrasensitive and rapid methods for the detection of bacterial spores is important for medical diagnostics of infectious diseases. While Surface-Enhanced Raman Spectroscopic (SERS) techniques have been increasingly demonstrated for achieving this goal, a key challenge is the development of sensitive and stable SERS substrates or probes. This Minireview highlights recent progress in exploring metal nanoparticle-based substrates, especially gold nanoparticle-based substrates, for the detection of biomarkers released from bacterial spores. One recent example involves assemblies of gold nanoparticles on a gold substrate for the highly sensitive detection of dipicolinic acid (DPA), a biomarker for bacterial spores such as Bacillus anthracis. This type of substrate exploits a strong SERS effect produced by the particle-particle and particle-substrate plasmonic coupling. It is capable of accurate speciation of the biomarker but also selective detection under various reactive or non-reactive conditions. In the case of detecting Bacillus subtilis spores, the limit of detection is quite comparable (0.1 ppb for DPA, and 1.5 × 10(9) spores per L (or 2.5 × 10(-14) M)) with those obtained using silver nanoparticle-based substrates. Implications of the recent findings for improving the gold nanoparticle-based SERS substrates with ultrahigh sensitivity for the detection of bacterial spores are also discussed.  相似文献   

15.
Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.  相似文献   

16.
The detection and quantification of biomarkers have gained more attention in the medical discipline to evaluating disease progression to manage medical treatment. Biomarkers range from gases to biological macromolecules. Because of the nanomolar range levels of typical biomarkers in plasma, blood, urine, exhalation samples, and other biological fluids as well as complex matrix of biological media, adequate sample preparation methods should be used for quantification of biomarkers. Biomarkers are discussed here generally classified mainly into two subgroups which arisen from disease or exposure compounds. The analytical method is critical for the validity/reliability of a biomarker. Accuracy, precision, reproducibility, recovery, sensitivity, and specificity all have high influence to the consistency with the limit and reference values concerned. In this paper, developments in well-established liquid-phase microextraction techniques for the clinical analysis of biological samples will be reviewed and discussed. This article presents an overview of microextraction methods for biological samples, focusing especially on biomarkers.  相似文献   

17.
报道了空间稳定的表面增强拉曼散射(SERS)标记的金纳米棒探针在免疫检测方面的应用.该探针是将拉曼活性分子4-巯基苯甲酸和生物亲和性高分子α-巯基-ω-羧基聚乙二醇共吸附于金纳米棒表面而制得.其中,聚乙二醇高分子链为探针提供保护作用和空间稳定,使之可以耐受较苛性的条件;其端位的羧基与抗体等靶向实体结合,从而赋予探针检测识别功能.当探针检测待测抗原时(通过固体基底上的捕获抗体、待测抗原和探针上的抗体之间的特异性结合,形成经典“三明治”夹心结构),探针上4-巯基苯甲酸的SERS信号就能示踪出这种识别.该探针对单组分抗原的检出浓度能低至1×10-9mg·mL-1.  相似文献   

18.
A new concept of optical encoding approach, surface enhanced Raman scattering (SERS)-fluorescence joint spectral encoding method (SFJSE), was demonstrated by using organic-metal-quantum dot (QD) hybrid nanoparticles (OMQ NPs) with a nanolayered structure. This method has two distinct characteristics, which make it more feasible to achieve enormous codes in practice, compared with a sole fluorescence- or SERS-based encoding protocol. One of the two characteristics is to use the joint SERS and fluorescence spectra as the encoding elements instead of an individual optical signal, resulting in a broadened optical spectrum range for efficient encoding. The other is to assemble SERS reporters and fluorescent agents onto different layers of OMQ NPs, leading to an easier fabrication protocol when a large number of agents need to be involved into encoding carriers. By conjugating different antibodies to OMQ NPs with varied codes, the potential application of such an encoding system in high-throughput detection has been investigated by multiplex sandwich immunoassays. The high specificity and sensitivity of the assays suggest that the SFJSE method could be developed as a powerful encoding tool for high-throughput bioanalysis with the use of OMQ NPs.  相似文献   

19.
A highly selective and sensitive surface-enhanced Raman scattering (SERS)-based immunoassay for the multiple detection of proteins has been developed. The proposed core shell magnetic gold (Au) nanoparticles allow for successful protein separation and high SERS enhancement for protein detection. To selectively detect a specific protein in a mixed protein solution, we employed the sandwich type SERS immunoassay with core shell magnetic Au nanoparticles utilizing specific antigen–antibody interactions. Based on this proposed SERS immunoassay, we can successfully detect proteins in very low concentrations (∼800 ag/mL of mouse IgG and ∼5 fg/mL of human IgG) with high reproducibility. Magnetically assisted protein separation and detection by this proposed SERS immunoassay would provide great potential for effective and sensitive multiple protein detection. This technique allows for the straightforward SERS-based bioassays for quantitative protein detections.  相似文献   

20.
Guzman NA  Phillips TM 《Electrophoresis》2011,32(13):1565-1578
Many diseases caused by inflammatory processes can progress to a chronic state causing deterioration in the quality of life and a poor prognosis for long-term survival. To address inflammatory diseases effectively, early detection and novel therapeutics are required. However, this can be challenging, in part because of the lack of early predictive biomarkers and the limited availability of adequate technologies capable of the identification/characterization of key predictive biomarkers present in biological materials, especially those found at picomolar concentrations and below. This review highlights the need for state-of-the art methodologies, with high-sensitivity and high-throughput capabilities, for determination of multiple biomarkers. Although many new biomarkers have been discovered recently, existing technology has failed to successfully bring this advancement to the patient's bedside. We present an overview of the various advances available today to extend the discovery of predictive biomarkers of inflammatory diseases; in particular, we review the technology of immunoaffinity capillary electrophoresis (IACE), which combines the use of antibodies as highly selective capture agents with the high resolving power of capillary electrophoresis. This two-dimensional hybrid technology permits the quantification and characterization of several protein biomarkers simultaneously, including subtle structural changes such as variants, isoforms, peptide fragments, and post-translational modifications. Furthermore, the results are rapid, sensitive, can be performed at a relatively low cost, without the introduction of false positive or false negative data. The IACE instrumentation can have relevance to medical, pharmaceutical, environmental, military, cultural heritage (authenticity of art work), forensic science, industrial and research fields, and in particular as a point-of-care biomarker analyzer in translational medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号