首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

2.
Abnormalities in the expression levels of EGFR/HER2 are found in many different types of human cancer; therefore, the design of dual inhibitors of EGFR/HER2 is a recognized anti-cancer strategy. Some lapatinib derivatives have been previously synthesized by modification at the methylsulfonylethylaminomethylfuryl group and biologically evaluated, demonstrating that the 2i compound shows potent inhibitory activity against EGFR/HER2-overexpressing cancer cells. In the present study, we explored the structural and energetic features that guide the molecular recognition of 2i using various EGFR/HER2 states. Molecular dynamics (MD) simulation with an MMPB(GB)SA approach was used to generate the inactive EGFR/HER2–ligand complexes. Our results corroborate that slight modification of lapatinib contributes to an increase in the affinity of the 2i compound for inactive EGFR/HER2 as compared with lapatinib compound, which is in accordance with experimental results. Comparison with previous results reveals that lapatinib and its derivative bind more strongly to the inactive than the intermediate active-inactive HER2 state. Principal component analysis allowed the observation that coupling of 2i to EGFR/HER2 is linked to a reduction in the conformational mobility, which may also contribute to the improvement in affinity observed for this compound as compared with lapatinib.  相似文献   

3.
Concomitant inhibition of MAPK and PI3K signaling pathways has been recognized as a promising strategy for cancer therapy, which effectively overcomes the drug resistance of MAPK signaling pathway-related inhibitors. Herein, we report the scaffold-hopping generation of a series of 1H-pyrazolo[3,4-d]pyrimidine dual ERK/PI3K inhibitors. Compound 32d was the most promising candidate, with potent inhibitory activities against both ERK2 and PI3Kα which displays superior anti-proliferative profiles against HCT116 and HEC1B cancer cells. Meanwhile, compound 32d possessed acceptable pharmacokinetic profiles and showed more efficacious anti-tumor activity than GDDC-0980 and the corresponding drug combination (BVD-523 + GDDC-0980) in HCT-116 xenograft model, with a tumor growth inhibitory rate of 51% without causing observable toxic effects. All the results indicated that 32d was a highly effective anticancer compound and provided a promising basis for further optimization towards dual ERK/PI3K inhibitors.  相似文献   

4.
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.  相似文献   

5.
Breast cancer (BC) is one of the most common causes of death among women worldwide. Recently, interest in novel approaches for BC has increased by developing new drugs derived from natural products with reduced side effects. This study aimed to treat BC cells with harmine hydrochloride (HMH) to identify its anticancer effects and mechanisms. HMH treatment suppressed cell growth, migration, invasion, and colony formation in MCF-7 and MDA-MB-231 cells, regardless of the hormone signaling. It also reduced the phosphorylation of PI3K, AKT, and mTOR and increased FOXO3a expression. Additionally, HMH treatment increased p38 phosphorylation in MCF-7 cells and activated c-Jun N-terminal kinase (JNK) phosphorylation in MDA-MB-231 cells in a dose-dependent manner, where activated p38 and JNK increased FOXO3a expression. Activated FOXO3a increased the expression of p53, p21, and their downstream proteins, including p-cdc25, p-cdc2, and cyclin B1, to induce G2/M cell cycle arrest. Furthermore, HMH inhibited the PI3K/AKT/mTOR pathway by significantly reducing p-AKT expression in combination with LY294002, an AKT inhibitor. These results indicate that mitogen-activated protein kinases (MAPKs) and AKT/FOXO3a signaling pathways mediate the induction of cell cycle arrest following HMH treatment. Therefore, HMH could be a potential active compound for anticancer bioactivity in BC cells.  相似文献   

6.
7.
8.
HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.  相似文献   

9.
Cervical cancer, a silent killer is a second most common type of malignant tumor detected in women’s world wide. In modern medicine the usage of phytochemicals to develop drugs for treating various chronic diseases is rapidly increasing. One such phytochemical is visnagin, a furanochrome present in fruits of Ammi visnaga. We investigated the anticarcinogenic potency of visnagin against human cervical carcinoma cells. The antioxidant potency of visnagin was analyzed with FRAP assay, DPPH assay, Chemiluminscence assay and ORAC assay. The cytotoxic effect of visnagin on normal epithelial Vero cells and human cervical cancer HeLa cells were analyzed using MTT assay. The effect of visnagin on antioxidant system was examined by measuring the levels of TBARS, SOD and GSH using the colorimetric assay techniques. DCFH-DA staining, AO/EtBr staining, propidium iodide staining was performed to assess the apoptotic induction potency of visnagin against cervical cancer cells. The ability of visnagin to inhibit cancer cell migration was examined with scratch wound assay. The anticarcinogenic property of visnagin was confirmed by analyzing the gene expression of PI3K/AKT/mTOR signaling proteins and MAPK signaling proteins using qPCR analysis. Visnagin exhibited increased Trolox equivalent value in all the four antioxidant potency estimating experiments. Visnagin induced cytotoxic effect only on carcinoma cells, decreased the antioxidants and increased the generation of ROS. It also induced apoptosis and inhibited the cancer cell migration. The qPCR analysis confirms visnagin decreases the gene expression cell cycle regulating protein of both PI3K/AKT/mTOR and MAPK pathway. Overall our results authentically prove visnagin inhibits the progression of cervical cancer in vitro. Therefore it can be an ideal drug of choice which can subject to further investigation for treating cervical cancer.  相似文献   

10.
Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment.  相似文献   

11.
Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.  相似文献   

12.
Chemicals can induce nephrotoxicity, with damage to different segments of the nephron and deterioration of renal function. Nephrotoxicity due to exposure to a toxin such as carbon tetrachloride, sodium oxalate, or heavy metals is the most common cause of kidney injury. The current study aimed to evaluate the protective effects of Celastrus paniculatus seed extract against lead-acetate-induced nephrotoxicity by evaluating the histopathology, immunohistochemistry, ultrastructure, and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Twenty-four rats were divided into four groups (n = 6 per group): group 1 contained normal animals and served as the control; group 2 received lead acetate (30 mg/kg body weight (b.w.)/day, oral); group 3 received lead acetate and the standard drug N-acetylcysteine (NAC, 200 mg/kg b.w./day, oral); and group 4 received lead acetate and the ethanolic extract of C. paniculatus seed (EECP; 800 mg/kg b.w./day, oral). Treatment was given for 28 consecutive days. The data were analyzed using one-way analysis of variance with SIGMA PLOT 13 using SYSTAT software followed by Newman–Keul’s test for comparison between the groups. EECP ameliorated the adverse changes caused by lead acetate. PI3K and AKT messenger RNA (mRNA) levels were diminished in lead-acetate-treated rats. Treatment with EECP inhibited the occurrence of shrunken cells, the atrophy of glomeruli, and degenerative changes in renal tubules caused by lead acetate. Interestingly, the PI3K and AKT mRNA levels were significantly increased in EECP-treated animals. Our results clearly evidence for the first time that C. paniculatus seed extract inhibits lead-acetate-induced detrimental changes in kidneys by regulating PI3K/AKT signaling pathways.  相似文献   

13.
The statin drug Simvastatin is a HMG-CoA reductase inhibitor that has been widely used to lower blood lipid. However, the drug is clinically observed to reposition a significant suppressing potency on glioblastoma (GBM) by unexpectedly targeting diverse kinase pathways involved in GBM tumorigensis. Here, an inverse screening strategy is described to discover potential kinase targets of Simvastatin. Various human protein kinases implicated in GBM are enriched to define a druggable kinome; the binding behavior of Simvastatin to the kinome is profiled systematically via an integrative computational approach, from which most kinases have only low or moderate binding potency to Simvastatin, while only few are identified as promising kinase hits. It is revealed that Simvastatin can potentially interact with certain known targets or key regulators of GBM such as ErbB, c-Src and FGFR signaling pathways, but exhibit low affinity to the well-established GBM target of PI3K/Akt/mTOR pathway. Further assays determine that Simvastatin can inhibit kinase hits EGFR, MET, SRC and HER2 at nanomolar level, which are comparable with those of cognate kinase inhibitors. Structural analyses reveal that the sophisticated T790 M gatekeeper mutation can considerably reduce Simvastatin sensitivity to EGFR by inducing the ligand change between different binding modes.  相似文献   

14.
Colorectal cancer (CRC) remains one of the main causes of death worldwide and in Saudi Arabia. The toxicity and the development of resistance against 5 fluorouracil 5FU pose increasing therapeutic difficulties, which necessitates the development of personalized drugs and drug combinations. Objectives: First, to determine the most important kinases and kinase pathways, and the amount of ABC transporters and KRAS in samples taken from Saudi CRC patients. Second, to investigate the chemosensitizing effect of LY294002 and HAA2020 and their combinations with 5FU on HT29, HT29-5FU, HCT116, and HCT116-5FU CRC cells, their effect on the three ABC transporters, cell cycle, and apoptosis, in light of the important kinase pathways resulting from the first part of this study. Methods: The PamChip® peptide micro-array profiling was used to determine the level of kinase and targets in the Saudi CRC samples. Next, RT-PCR, MTT cytotoxicity, Western blotting, perturbation of cell cycle, annexin V, and immunofluorescence assays were used to investigate the effect on CRC, MRC5, and HUVEC cells. Results: The kinase activity profiling highlighted the importance of the PI3K/AKT, MAPK, and the growth factors pathways in the Saudi CRC samples. PIK3CA was the most overexpressed, and it was associated with increased level of mutated KRAS and the three ABC transporters, especially ABCC1 in the Saudi samples. Next, combining HAA2020 with 5FU exhibited the best synergistic and resistance-reversal effect in the four CRC cells, and the highest selectivity indices compared to MRC5 and HUVEC normal cells. Additionally, HAA2020 with 5FU exerted significant inhibition of ABCC1 in the four CRC cells, and inhibition of PIK3CA/AKT/MAPK7/ERK in HT29 and HT29-5FU cells. The combination also inhibited EGFR, increased the preG1/S cell cycle phases, apoptosis, and caspase 8 in HT29 cells, while it increased the G1 phase, p21/p27, and apoptosis in HT29-5FU cells. Conclusion: We have combined the PamChip kinase profiling of Saudi CRC samples with in vitro drug combination studies in four CRC cells, highlighting the importance of targeting PIK3CA and ABCC1 for Saudi CRC patients, especially given that the overexpression of PIK3CA mutations was previously linked with the lack of activity for the anti-EGFRs as first line treatment for CRC patients. The combination of HAA2020 and 5FU has selectively sensitized the four CRC cells to 5FU and could be further studied.  相似文献   

15.
Exon 20 insertion (Ex20Ins) mutations are the third most prevalent epidermal growth factor receptor (EGFR) activating mutation and the most prevalent HER2 mutation in non‐small cell lung cancer (NSCLC). Novel therapeutics for the patients with Ex20Ins mutations are urgently needed, due to their poor responses to the currently approved EGFR and HER2 inhibitors. Here we report the discovery of highly potent and broadly effective EGFR and HER2 Ex20Ins mutant inhibitors. The co‐crystal structure of compound 1 b in complex with wild type EGFR clearly revealed an additional hydrophobic interaction of 4‐fluorobenzene ring within a deep hydrophobic pocket, which has not been widely exploited in the development of EGFR and HER2 inhibitors. As compared with afatinib, compound 1 a exhibited superior inhibition of proliferation and signaling pathways in Ba/F3 cells harboring either EGFR or HER2 Ex20Ins mutations, and in the EGFR P772_H773insPNP patient‐derived lung cancer cell line DFCI127. Our study identifies promising strategies for development of EGFR and HER2 Ex20Ins mutant inhibitors.  相似文献   

16.
We have recently shown that UVB radiation activates epidermal growth factor receptor (EGFR)/extracellular regulated kinase 1 and 2 (ERK1/2) and p38 signaling pathways in keratinocytes. However, the functional relevance of these processes for downstream signaling and cell survival remains to be determined. The specific EGFR inhibitor PD153035 markedly decreased UVB-induced phosphorylation of EGFR, ERK1/2 and shc, whereas p38 activation was unaffected. PD153035 pretreatment followed by UVB reduced clonogenic potential and enhanced peroxide production, apoptosis and cell death. Our data suggest that ligand-independent phosphorylation of EGFR and likely dependent downstream signaling pathways regulate cellular defense mechanisms important for cell survival following oxidative stress.  相似文献   

17.
Overexpression of HER2 correlates with more aggressive tumors and increased resistance to cancer chemotherapy. However, a functional comparison between the HER2(high)/HER3 and the HER2(low)/HER3 dimers on tumor metastasis has not been conducted. Herein we examined the regulation mechanism of heregulin- β1 (HRG)-induced MMP-1 and -9 expression in breast cancer cell lines. Our results showed that the basal levels of MMP-1 and -9 mRNA and protein expression were increased by HRG treatment. In addition, HRG-induced MMP-1 and -9 expression was significantly decreased by MEK1/2 inhibitor, U0126 but not by phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294002. To confirm the role of MEK/ERK pathway on HRG-induced MMP-1 and -9 expression, MCF7 cells were transfected with constitutively active adenoviral- MEK (CA-MEK). The level of MMP-1 and -9 expressions was increased by CA-MEK. MMP-1 and -9 mRNA and protein expressions in response to HRG were higher in HER2 overexpressed cells than in vector alone. The phosphorylation of HER2, HER3, ERK, Akt, and JNK were also significantly increased in HER2 overexpressed MCF7 cells compared with vector alone. HRG-induced MMP-1 and -9 expressions were significantly decreased by lapatinib, which inhibits HER1 and HER2 activity, in both vector alone and HER2 overexpressed MCF7 cells. Finally, HRG-induced MMP-1 and MMP-9 expression was decreased by HER3 siRNA overexpression. Taken together, we suggested that HRG-induced MMP-1 and MMP-9 expression is mediated through HER3 dependent pathway and highly expressed HER2 may be associated with more aggressive metastasis than the low expressed HER2 in breast cancer cells.  相似文献   

18.
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB‐exposed SKH‐1 hairless mouse skin. Mice were exposed to 180 mJ cm?2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB‐exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX‐2, PGE2 as well as its receptors (EP1–EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL‐1β and IL‐6 in UVB‐exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB‐induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB‐induced cutaneous inflammation and DNA damage.  相似文献   

19.
Tin oxide nanoparticles (SnO2 NPs) demonstrate potential anti-cancer functions. However, the anti-cancer mechanisms of SnO2 NPs have not been explored in detail. In the present study, we synthesized SnO2 NPs through laser ablation technique and examined their anticancer mechanisms and the probable involvement of the PI3K/AKT mediated pathways in human breast cancer cells (MCF-7) in vitro. The synthesized SnO2 NPs were characterized by transmission electron microcopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) techniques. Afterwards, the breast cancer cells were incubated with increasing concentrations of SnO2 NPs, and inhibition of cell proliferation was assessed by the viability assay. Furthermore, the quantification of reactive oxygen species (ROS) and apoptosis were examined by flow cytometry followed by superoxide dismutase (SOD) and catalase (CAT) activity as well as mitochondrial membrane potential assays. The expression levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mechanistic target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), and Bax were also assessed by western blot and quantitative real time PCR (qRT-PCR). It was shown that SnO2 NPs, 30 nm, with potential colloidal stability selectively prevented the proliferation of MCF-7 in comparison with MCF-10A cells and triggered ROS production, apoptosis, deactivation of SOD and CAT activity, and mitigation of mitochondrial membrane potential. Moreover, SnO2 NPs stimulated mitochondrial-mediated apoptosis pathway by overexpression of Bax/Bcl-2 and downregulation of p-PI3K/p-AKT/p-mTOR signaling pathway. This data elucidates the possible mechanisms by which SnO2 NPs may stimulate their anticancer effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号