首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses, lanthanide quantitative analyses, mass spectrometry and luminescence spectroscopy, and decay dynamics of crystals containing pentanuclear hetero-lanthanide(III) nanoclusters [(Ln'(5-x)Ln(x))(NO(3))(6)(mu(5)-OH)(mu(4)-L)(2)] (0 < or = x < or = 5), Ln' = Eu or Tb; Ln = La-Nd, Sm-Ho (hereafter Ln'(5-x) Ln(x)) were undertaken in search of information on factors governing self-assembly processes by which the clusters are formed and electronic interactions within and between them. The data obtained are consistent with the self-assembly of Ln'(5-x) Ln(x) nanoclusters being a concerted process featuring a profound expression of complementarity among mutually bridging [Ln(mu(4)-L](-) and [Ln(NO(3))(2)](+) components. The energy transport regime in crystals of Eu(5-x) Ln(x) is in the dynamic regime when x = 0 or Ln = La and, at 293 K, Ln = Dy, despite the presence of two crystallographically different Eu(3+) coordination environments which give rise to a doublet in the excitation and emission spectra of Eu(3+)((5)D(0)). The luminescence decay behavior of Eu(3+)((5)D(0)) in Eu(5-x) Ln(x) (Ln = Dy (for 77 K), Sm) is intermediate between the static and dynamic limits and reveals extensive electronic coupling among lanthanide ions, including many-body processes at relatively high Dy(3+) or Sm(3+) concentrations.  相似文献   

2.
A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).  相似文献   

3.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

4.
The reaction between polyoxometalate (POM) [TBA](12)[WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] (TBA = tetrabutyl ammonium) and lanthanide (Ln) nitrate (Ln = La, Eu and Tb) in a mixed solvent of CH(3)CN and DMF yielded three noncentrosymmetric diamondoid Ln-POM solid materials, {[Ln(2)(DMF)(8)(H(2)O)(6)][ZnW(12)O(40)]}·4DMF (Ln-POM; Ln = La, Eu and Tb). In these compounds, the {ZnW(12)O(40)} unit, transferred from the metastable [WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] cluster, acts as a tetradentate ligand to connect with four Ln nodes, while the Ln ion links up two {ZnW(12)O(40)} units. These compounds generated interesting luminescence emissions that are dependent on the Ln ions and their ratios. White light emission was obtained by a doped approach with a rational ratio of the Eu(3+) and Tb(3+) ions.  相似文献   

5.
With glycine or L-alanine as ligands, a series of novel 3d-4f heterometallic Ln(6)Cu(24) clusters with the formulas of [Sm(6)Cu(24)(mu(3)-OH)(30)(Gly)(12)(Ac)(12)(ClO(4))(H(2)O)(16)].(ClO(4))(9).(OH)(2).(H(2)O)(31) (1) and [Ln(6)Cu(24)(mu(3)-OH)(30)(Ala)(12)(Ac)(6)(ClO(4))(H(2)O)(12)].(ClO(4))(10).(OH)(7).(H(2)O)(34) (2.Ln) (Ln = Tb, Gd, Sm, and La) were synthesized by self-assembly, among which 1 and 2.Tb were characterized by X-ray structure analysis. The metal skeleton of the clusters may be described as a huge [Ln(6)Cu(12)] octahedron (constructed with 6 Ln(III) ions located at the vertices and 12 inner Cu(II) ions located at the midpoints of the edges) connected by 12 additional Cu(II) ions (every 2 are connected to 1 Ln(III) vertex). The temperature dependence of the magnetic susceptibilities of 2.Ln was investigated and was found to vary with the central rare-earth ions. Impedance spectroscopic measurements of 2.Ln reveal that they are ionic conductors.  相似文献   

6.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

7.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

8.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

9.
A series of lanthanide and lanthanide-transition metal compounds with isonicotinic acid (Hina) and oxalate ligands have been synthesized under hydrothermal reactions. X-Ray crystal structure analyses reveal that they have a rich structural chemistry. Three distinct structure types were exhibited with decreasing lanthanide radii: [LnCu(ina)(2)(C(2)O(4))].H(2)O (Ln=La 1, Pr 2, Nd 3) for type I, [Ln(ina)(C(2)O(4))(H(2)O)(2)] (Ln=Sm 4, Eu 5, Gd 6) for type II, and [Ln(ina)(C(2)O(4))(0.5)(OH)] (Ln=Tb 7, Dy 8, Er 9) for type III. The structure of type I has a 3d-4f heterometallic structure and consists of 1D channels along the b axis, which filled with guest water molecules. They exhibit a first 3D uninodal eight-connected framework with a unique 3(6).4(18).5(3).6 topology. Type II has 2D Ln-ina-C(2)O(4) 4(4)-nets, the nitrogen donors of the ina ligand are not coordinated to any of the metal ions, inducing the lower dimensional networks. Type III consists of 2D Ln-C(2)O(4) layers pillared by ina ligands to form a pillared-layer framework. The structure evolution is due to the versatile coordination modes of ina and oxalate ligands as well as the lanthanide contraction effect. Notably, the oxalate ligand was in situ synthesized from orotic acid through an oxidation-hydrolysis reaction. The type III materials show high thermal stability; luminescence properties of Nd 3, Sm 4, Eu 5, Tb 7 are also investigated.  相似文献   

10.
A series of trivalent mono- and tris(ligand) lanthanide complexes of a sulfur-bridged binaphthol ligand [1,1'-S(2-HOC(10)H(4)Bu(t)(2)-3,6)(2)] H(2)L(SN), have been prepared and characterised both structurally and photophysically. The H(2)L(SN) ligand provides an increased steric bulk and offers an additional donor atom (sulfur) as compared with 1,1'-binaphthol (BINOL), a ligand commonly used to complex Lewis acidic lanthanide catalysts. Reaction of the diol H(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] affords silylamido- and amino- derivatives [Sm(L(SN))[N(SiMe(3))(2)][HN(SiMe(3))(2)]] and the crystallographically characterised [Sm(L(SN))[N(SiMe(3))(2)](thf)(2)] with different degrees of structural rigidity, depending on the presence of coordinating solvents. The binaphthyl groups of the L(SN) ligand act as sensitisers of the metal centred emission, which is observed for the Eu(III) and Sm(III) complexes studied. We have therefore sought to use emission spectroscopy as a non-invasive technique to monitor a monomer-dimer equilibrium in these complexes. A dramatic difference between the emission properties of the unreactive dimeric Sm(III) aryloxide complex, the solvated monomeric analogues and the amido adduct demonstrated the potential use of such a technique. For a few representative lanthanides (Ln = Sm, Eu and Y) the reaction of the dilithium salt Li(2)L(SN) with either [Ln[N(SiMe(3))(2]3)] or [LnCl(3)(thf)(3)] affords only the homoleptic complex [Li(S)(3)][LnL(SN)(3)](S = thf or diethyl ether); we report the structural characterisation of the Sm complex. However, the reactions of this dipotassium salt K(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] or [SmCl(3)(thf)(3)] give only [SmL(SN)N(SiMe(3))(2)], or intractable mixtures respectively, in which no (tris)binaphtholate is observed. The only isolable lanthanide-L(SN) halide adduct so far is [YbL(SN)I(thf)].  相似文献   

11.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.  相似文献   

12.
Herein, we report the synthesis, structural investigation, and magnetic and photophysical properties of a series of 13 [Zn(II)Ln(III)] heterodinuclear complexes, which have been obtained employing a Schiff-base compartmental ligand derived from o-vanillin [H(2)valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)]. The complexes have been synthesized starting from the [Zn(valpn)(H(2)O)] mononuclear compound and the corresponding lanthanide nitrates. The crystallographic investigation indicated two structural types: the first one, [Zn(H(2)O)(valpn)Ln(III)(O(2)NO)(3)], contains 10-coordinated Ln(III) ions, while in the second one, [Zn(ONO(2))(valpn)Ln(III)(H(2)O)(O(2)NO)(2)]·2H(2)O, the rare earth ions are nine-coordinated. The Zn(II) ions always display a square-pyramidal geometry. The first structural type encompasses the larger Ln ions (4f(0)-4f(9)), while the second is found for the smaller ions (4f(8)-4f(11)). The dysprosium derivative crystallizes in both forms. Luminescence studies for the heterodinuclear compounds containing Nd(III), Sm(III), Tb(III), Dy(III), and Yb(III) revealed that the [Zn(valpn)(H(2)O)] moiety acts as an antenna. The magnetic properties for the paramagnetic [Zn(II)Ln(III)] complexes have been investigated.  相似文献   

13.
A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems.  相似文献   

14.
Reactions of 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid) [notpH(6), C(9)H(18)N(3)(PO(3)H(2))3] with different lanthanide salts result in four types of Ln-notp compounds: [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(NO(3))(H(2)O)].4H2O (1), [Ln = Eu (1 Eu), Gd (1 Gd), Tb (1 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]Cl.3H2O (2) [Ln = Eu (2 Eu), Gd (2 Gd), Tb (2 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.8H2O, (3) [Ln = Eu (3 Eu), Gd (3 Gd)], and [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.3H2O (4), [Ln = Gd (4 Gd), Tb (4 Tb)]. Compounds within each type are isostructural. In compounds 1, dimers of {Ln2(notpH4)2(NO3)2(H2O)2} are found, in which the two lanthanide atoms are connected by two pairs of O-P-O and one pair of mu-O bridges. The NO3- ion serves as a bidentate terminal ligand. Compounds 2 contain similar dimeric units of {Ln2(notpH4)2(H2O)2} that are further connected by a pair of O-P-O bridges into an alternating chain. The Cl- ions are involved in the interchain hydrogen-bonding networks. A similar chain structure is also found in compounds 3; in this case, however, the chains are linked by ClO4- counterions through hydrogen-bonding interactions, forming an undulating layer in the (011) plane. These layers are fused through hydrogen-bonding interactions, leading to a three-dimensional supramolecular network with large channels in the [100] direction. Compounds 4 show an interesting brick-wall-like layer structure in which the neighboring lanthanide atoms are connected by a pair of O-P-O bridges. The ClO4- counterions and the lattice water molecules are between the layers. In all compounds the triazamacrocyclic nitrogen atoms are not coordinated to the Ln(III) ions. The anions and the pH are believed to play key roles in directing the formation of a particular structure. The fluorescence spectroscopic properties of the Eu and Tb compounds, magnetic properties of the Gd compounds, and the catalytic properties of 4 Gd were also studied.  相似文献   

15.
The structures, luminescent and magnetic properties of three series of coordination polymers with formulas-{[Fe(3)Ln(2)(L(1))(6)(H(2)O)(6)]·xH(2)O}(n) (Ln = Pr-Er; 1-9), {[Co(3)Ln(2)(L(1))(6)(H(2)O)(6)]·yH(2)O}(n) (Ln = Pr-Dy, Yb; 10-17) and {[Co(2)Ln(L(2))(HL(2))(2)(H(2)O)(7)]·zH(2)O}(n) (Ln = Eu-Yb; 18-25) (H(2)L(1) = pyridine-2,6-dicarboxylic acid, H(3)L(2) = 4-hydroxyl-pyridine-2,6-dicarboxylic acid) were systematically explored in this contribution. [Fe(II)(HS)-L(1)-Ln(III)] (1-9) and [Co(II)-L(1)-Ln(III)] (10-17) series are isostructural, and display 3D porous networks with 1D nanosized channels constructed by Fe/Co-OCO-Ln linkages. Furthermore, two types of "water" pipes are observed in 1D channels. [Co(II)-L(2)-Ln(III)] (18-25) series exhibit 2D open frameworks based on double-stranded helical motifs, which are further assembled into 3D porous structures by intermolecular hydrogen bonds between hydroxyl groups. The variety of the resulting structures is mainly due to the HO-substitution effect. These 3D coordination polymers show considerably high thermal stability, and do not decomposed until 400 °C. The high-spin Fe(II) ion in [Fe(II)(HS)-L(1)-Ln(III)] was confirmed by X-ray photoelectron spectroscopy, M?ssbauer spectroscopy and magnetic studies. The luminescent spectra of coordination polymers associated with Sm(III), Eu(III), Tb(III) and Dy(III) were systematically investigated, and indicate that different d-metal ions in d-f systems may result in dissimilar luminescent properties. The magnetic properties of [Fe(II)(HS)-L(1)-Ln(III)] (3, 6, 7, 9, 13), [Co(II)-L(1)-Ln(III)] (15-17) and [Co(II)-L(2)-Ln(III)] (19-24) coordination polymers were also studied, and the χ(M)T values decrease with cooling. For the single ion behavior of Co(II) and Ln(III) ions, the magnetic coupling nature between Fe(II)(HS)/Co(II) and Ln(III) ions cannot be clearly depicted as antiferromagnetic coupling.  相似文献   

16.
The segmental bidentate-tridentate-bidentate ligand L2 reacts with M(II) (M = Cr, Zn) and Ln(III) (Ln = La, Eu, Gd, Tb, Lu) to give the heterotrimetallic triple-stranded helicates [MLnM(L2)3]7+. For M = Zn(II), the isolated complexes [ZnLnZn(L2)3](CF3SO3)7 (Ln = Eu, Tb) display only lanthanide-centred luminescence arising from the pseudo-tricapped trigonal prismatic LnN9 coordination site. For M = Cr(II), rapid air oxidation provides Cr(III) and leads to the isolation of inert [CrLnCr(L2)3](CF3SO3)9 (Ln = Eu, Tb) complexes, in which divergent intramolecular Ln --> Cr energy transfers can be evidenced. Taking [ZnEuZn(L2)3]7+ as a luminescent standard for Eu-centred emission, a quantitative treatment of the energy migration processes indicates that the rate constant characterizing the Eu --> Cr energy transfer is more efficient in the trimetallic system, than in the analogous simple bimetallic edifice. Particular attention is focused on potential control of directional energy transfer processes in Cr-Ln pairs.  相似文献   

17.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

18.
Two new tetraazamacrocyclic ligands are designed with the aim of sensitizing the luminescence of Tb(III) and Eu(III) ions in water: L5 [1,4,7,10-tetrakis[N-(phenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane] and L6 [1,4,7,10-tetrakis[N-(4-phenylphenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane]. These ligands react with lanthanide trifluoromethanesulfonates to yield stable 1:1 complexes in water (log K = 12.89 +/- 0.15 for EuL5). X-ray diffraction on [Tb(L5)(H(2)O)](CF(3)SO(3))(3) (P1 macro, a = 13.308(3) A, b = 14.338(3) A, c = 16.130(3) A, alpha = 101.37(3) degrees, beta = 96.16(3) degrees, gamma = 98.60(3) degrees ) shows the Tb(III) ion lying on a C(4) axis and being 9-coordinate, with one water molecule bound in its inner coordination sphere. The absolute quantum yields are determined in aerated water for the complexes formed with ions used in fluoroimmunoassays (Ln = Sm, Eu, Tb, and Dy). Large values are found for [Tb(H(2)O)(L5)](3+) and [Eu(H(2)O)(L6)](3+), in line with the molecular design of the receptors: 23.1% and 24.7%, respectively. The intense luminescence of these ions results from efficient intersystem crossing and L --> Ln energy transfer processes, as well as from a suitable shielding of the emitting ions from radiationless deactivation.  相似文献   

19.
Polymerization of methyl methacrylate (MMA) initiated by the rare-earth borohydride complexes [Ln(BH(4))(3)(thf)(3)] (Ln=Nd, Sm) or [Sm(BH(4))(Cp*)(2)(thf)] (Cp*=eta-C(5)Me(5)) proceeds at ambient temperature to give rather syndiotactic poly(methyl methacrylate) (PMMA) with molar masses M(n) higher than expected and quite broad molar mass distributions, which is consistent with a poor initiation efficiency. The polymerization of MMA was investigated by performing density functional theory (DFT) calculations on an eta-C(5)H(5) model metallocene and showed that in the reaction of [Eu(BH(4))(Cp)(2)] with MMA the borate [Eu(Cp)(2){(OBH(3))(OMe)C=C(Me)(2)}] (e-2) complex, which forms via the enolate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e), is calculated to be exergonic and is the most likely of all of the possible products. This product is favored because the reaction that leads to the formation of carboxylate [Eu(Cp)(2){OOC-C(Me)(=CH(2))}] (f) is thermodynamically favorable, but kinetically disfavored, and both of the potential products from a Markovnikov [Eu(Cp)(2){O(OMe)C-CH(Me)(CH(2)BH(3))}] (g) or anti-Markovnikov [Eu(Cp)(2){O(OMe)C-C(Me(2))(BH(3))}] (h) hydroboration reaction are also kinetically inaccessible. Similar computational results were obtained for the reaction of [Eu(BH(4))(3)] and MMA with all of the products showing extra stabilization. The DFT calculations performed by using [Eu(Cp)(2)(H)] to model the mechanism previously reported for the polymerization of MMA initiated by [Sm(Cp*)(2)(H)](2) confirmed the favorable exergonic formation of the intermediate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e') as the kinetic product, this enolate species ultimately leads to the formation of PMMA as experimentally observed. Replacing H by BH(4) thus prevents the 1,4-addition of the [Eu(BH(4))(Cp)(2)] borohydride ligand to the first incoming MMA molecule and instead favors the formation of the borate complex e-2. This intermediate is the somewhat active species in the polymerization of MMA initiated by the borohydride precursors [Ln(BH(4))(3)(thf)(3)] or [Sm(BH(4))(Cp*)(2)(thf)].  相似文献   

20.
Lanthanide complexes with the Schiff base axial macrobicyclic ligand L(1) react with Zn(II) nitrate in the presence of CaH(2) to yield Ln(III)-Zn(II) heterodinuclear cryptates with the formula [Ln(NO(3))(L(1)-3H)Zn](NO(3)).xH(2)O.yMeOH. The macrobicyclic receptor L(1) is an azacryptand N[(CH(2))(2)N=CH-R-CH=N-(CH(2))(2)](3)N (R = 1,3-(2-OH-5-Me-C(6)H(2))). The crystal structures of the Pr(III), Yb(III), and Lu(III) complexes, chemical formulas [Ln(NO(3))(L(1)-3H)Zn](NO(3)).xSolv (monoclinic, C2/c, Z = 8), as well as that of [Zn(2)(L(1)-3H)](NO(3)).H(2)O (15) (triclinic, P(-)1, Z = 2), have been determined by X-ray crystallography. The ligand is helically wrapped around the two metal ions, leading to pseudo-C(3) symmetries around the metals. The Ln(III)-Zn(II) distances lie in the range 3.3252(13) to 3.2699(14) A, while the Zn(II)-Zn(II) distance in 15 amounts to 3.1037(18) A. The three five-membered chelate rings of the ligand backbone coordinating the Ln(III) ion adopt a (lambdalambdadelta)(5) (or (deltadeltalambda)(5)) conformation while the three pseudochelate rings formed by the coordination of the ligand to the Zn(II) ion adopt a (lambda'lambda'lambda')(5) (or (delta'delta'delta')(5)) conformation. Thus in the solid state the conformation of the three cations is Lambda(deltadeltalambda)(5)(delta'delta'delta')(5) or its enantiomeric form Delta(lambdalambdadelta)(5)(lambda'lambda'lambda')(5). In solution, the helicates present a time-averaged C(3) symmetry, as shown by (1)H NMR, and the conformation of the cations is described as Lambda(deltadeltadelta)(5)(delta'delta'delta')(5) (or Delta(lambdalambdalambda)(5)(lambda'lambda'lambda')(5)). The photophysical properties of the cryptates depend on the nature of the Ln(III) ion, and (L-3H)(3)(-) is revealed to be a good sensitizer for Eu(III) and Tb(III) at low temperatures, but the emission at room temperature is limited by the low energy of the ligand (3)pipi state. While Eu(III) is most effectively sensitized by the ligand triplet state, the Tb(III) ((5)D(4)) sensitization occurs via the singlet state. The quantum yield of the metal-centered luminescence in the Eu-Zn cryptate amounts to 1.05% upon ligand excitation. The low energy of the ligand (3)pipi state allows efficient sensitization of the Nd(III) and Yb(III) cryptates, which emit in the near-infrared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号