首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
乙烯在ZSM-5催化剂上低聚反应规律的研究   总被引:2,自引:0,他引:2  
在固定床微反装置上,采用ZSM-5分子筛催化剂,考察了不同条件下乙烯的低聚反应。结果表明,适宜的条件可以抑制副反应,提高产物中丙烯与丁烯的选择性。随反应时间的延长,催化剂因积炭而失活,乙烯转化率由初始的96.2%降至6h后的41.1%,丙烯和丁烯选择性增加。提高乙烯空速可有效抑制氢转移反应从而提高烯烃选择性,根据不同转化率对应的产物分布,得到了ZSM 5催化剂上乙烯低聚的反应路径。乙烯转化率随反应温度的升高先增加后降低,500℃时达到最大值为88.0%,主要产物LPG组分中烷烃居多。提高反应压力有利于低聚反应进行,可以显著提高乙烯转化率,但不利于生成丙烯和丁烯。  相似文献   

2.
纳米HZSM-5沸石酸度的调节及对液化气裂解反应的影响   总被引:3,自引:1,他引:2  
通过对纳米HZSM-5沸石进行钠离子浸渍改性和在小型常压固定床反应器中开展碳四液化气催化裂解制丙烯反应研究,探讨了催化剂酸度对反应选择性的影响.结果表明,钠离子改性能够选择性地去除纳米HZSM-5沸石表面的强酸中心,而对弱酸中心则基本无影响.在用钠离子改性基本上消除催化剂强酸中心的情况下,混合碳四液化气的催化裂解反应主要发生在丁烯分子上,丙烯的最高选择性可达60%,丙烯和乙烯的总选择性可达80%.  相似文献   

3.
水蒸气处理对ZSM-5酸性及其催化丁烯裂解性能的影响   总被引:14,自引:1,他引:13  
 考察了水蒸气处理温度和时间对ZSM-5分子筛酸性及其催化丁烯裂解性能的影响. 结果表明,通过水蒸气处理可降低ZSM-5分子筛的酸量和酸强度,明显提高产物中丙烯与乙烯的选择性和收率,抑制副产物芳烃和低碳烷烃的生成. 用柠檬酸脱除水蒸气处理过程中产生的非骨架铝,可提高ZSM-5分子筛孔道的容碳能力,从而提高催化剂的稳定性. 考察了反应条件对催化剂性能的影响,结果表明较佳的反应条件为WHSV=3.5~8.8 h-1,p=0.06~0.1 MPa,θ=600~620 ℃.  相似文献   

4.
以正己烷为模型化合物,通过产物分布分析,探讨HZSM-5分子筛上烷烃酸催化裂解反应路径及机理。研究结果表明,反应温度为300℃,不存在热裂解过程的条件下,只有基于碳正离子机理的酸催化反应。催化剂裂化活性与B酸(Br(o|")nsted acid)量成正相关。由裂解产物的分布特点,其中,丙烯的选择性与催化剂硅铝比和剂油比正相关,而乙烷、乙烯和丙烷的选择性呈负相关性,证实了低酸密度有利于单分子裂解路径的进行。值得注意的是,正己烷直接裂解所得C_4产物的总选择性明显高于C_2产物,结合量化计算,证实正己烷裂解生成的C_2H_5~+碳正离子难以通过氢转移反应生成乙烯和乙烷,而是更倾向于与正己烷分子形成新的碳鎓离子(C_8H_(19)~+,继续发生裂解反应生成更多C_4产物,揭示了轻烃催化裂解产物中乙烯选择性低的理论本质。综上可知,通过改变催化剂酸密度和剂油比,可实现反应路径的控制,从而调控轻烃酸催化裂解产物的选择性。本研究可为石脑油催化裂解催化剂和工艺开发提供重要的理论支撑。  相似文献   

5.
水蒸气处理对P-ZSM-5催化性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
在不同温度下,用水蒸气对P-ZSM-5催化剂进行了处理,利用XRD、NH3-TPD、比表面和孔径物理吸附仪等手段对催化剂进行了表征,研究了水蒸气处理对P-ZSM-5催化1-丁烯裂解反应性能的影响.实验结果表明:P-ZSM-5催化剂具有良好的水热稳定性;合适的水蒸气处理,有利于催化剂孔容和孔径的增加;水蒸气处理降低了P-ZSM-5催化剂的酸量和酸强度,明显提高了丁烯裂解生成丙烯的选择性、收率和催化剂的抗积炭性能.最佳的水蒸气处理温度为580℃,P-ZSM-5催化剂催化1-丁烯裂解反应的丙烯选择性为39.4%,收率为34.2%.  相似文献   

6.
FCC汽油催化裂解生产低碳烯烃的研究   总被引:1,自引:1,他引:0  
利用小型固定流化床实验装置研究了催化裂化(FCC)汽油在专门开发的多产低碳烯烃催化剂上的裂解性能。研究表明,反应温度对原料转化率、总低碳烯烃产率的影响最大,剂油比和水油比对低碳烯烃的产率影响较小,而随着重时空速的增大,总低碳烯烃产率略有降低;确定了FCC汽油催化裂解制低碳烯烃的实验室最优反应条件,即反应温度、剂油比、重时空速和水油比分别为660℃、12、15h-1和0.8。根据反应条件与裂解产物的关系提出了催化裂解反应深度函数,并建立裂解产物产率与催化裂解反应深度函数之间的关联模型。随催化裂解反应深度函数的增加,乙烯产率持续增加,而丙烯和丁烯产率出现最大值,利用此模型可以对产物产率进行预测。  相似文献   

7.
SAPO-34分子筛催化丁烯转化制丙烯的研究   总被引:1,自引:1,他引:0  
通过水热法合成SAPO-34分子筛,将其制成催化剂用于催化丁烯转化制取丙烯,考察了反应温度、空速和铝磷比等对催化性能的影响;还比较了SAPO-34分子筛与ZSM-5分子筛催化该反应的差异.结果表明,在实验范围内,反应温度升高会使得丁烯的转化率明显增高,且丙烯选择性提高;而空速增加,则丁烯的转化率和丙烯选择性降低;铝磷比越大,对丙烯的选择性越差.在有效的反应时间内,SAPO-34分子筛催化效果好于ZSM-5分子筛,但单程寿命较ZSM-5分子筛短.  相似文献   

8.
详细研究了超临界条件下环己烷的热裂解性能,其中气相产物采用气相色谱分析,液相产物通过气相色谱-质谱联用仪进行分析,主要裂解产物为甲烷、乙烷、乙烯、丙烷、丙烯、丁烯、己烯、环己烯和苯等。研究发现,温度、压力和流体的湍动程度显著影响裂解反应,裂解转化率和裂解深度随温度升高均增加,压力和流体的湍动程度对裂解的影响是通过改变停留时间产生的。根据液相产物的主要成分,推测了可能的裂解过程。  相似文献   

9.
利用小型固定流化床实验装置,对C4烃类在催化裂化催化剂上催化转化反应规律进行了实验研究,考察了不同反应温度及空速对C4烃类催化转化反应的产物分布和组成的影响。实验结果表明,催化裂化催化剂对C4烃类具有一定芳构化和裂化性能,在适宜的反应条件下,可增产芳烃和丙烯;在C4烃类催化转化过程中,丁烯是主要的反应物,而丁烷几乎不反应;低反应温度有利于增产芳烃,高反应温度有利于增产丙烯。较低的空速对增产芳烃和丙烯都有利。根据双分子反应机理和反应结果,建立了C4烃类在催化裂化催化剂上催化转化过程的反应网络。对C4烃类催化转化历程分析表明,中间产物碳五和碳六烯烃较弱的二次裂化性能是C4烃类在催化裂化催化剂上催化转化过程中乙烯和丙烯产率较低的主要原因。  相似文献   

10.
通过计算和实验研究相结合的方法研究丙烷甲醇共进料制烯烃反应热力学及动力学过程.热力学过程采用Gibbs最小自由能法模拟丙烷甲醇制烯烃反应体系的平衡组成,同时结合响应面分析法建立了温度、压力、丙烷甲醇进料摩尔比对产物中丙烯的摩尔分数的函数关系,通过回归方程分析最佳工艺范围.热力学分析了反应条件对平衡产物的影响,随着反应温度升高,平衡产物丙烯的质量分数先增高后降低;平衡产物中丙烯的质量分数随着丙烷甲醇进料中丙烷摩尔比增高而增高,但是实际的反应状态和催化剂也是相关的,因此研究了存在催化剂情况下,丙烷脱氢和丙烷甲醇共进料反应的活化能.反应活化能动力学实验表明,通过添加少量甲醇可以降低耦合过程中丙烷脱氢表观活化能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号