首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
詹溯  章福祥 《化学学报》2021,79(2):146-157
氨不仅是重要的化肥化工原料, 还是理想的清洁能源载体. 目前人工氨合成主要基于Haber-Bosch过程, 但该方法存在能耗大、转化率低、大量排放温室气体等问题. 相比而言, 利用太阳能催化转化N2和H2O等制NH3是一条实现太阳能至化学能转化的绿色制氢储氢一体化路线, 受到世界各国科学家的高度关注. 但当前该技术路线的氮还原(NRR)转化率和法拉第效率均较低, 开发高效NRR电催化剂并将其与捕光材料耦合是实现高效太阳能催化合成氨的关键. 本综述将首先介绍太阳能催化合成氨的一些基本原理、主要技术路线和基本检测方法, 然后分类介绍传统热催化剂、过渡金属催化剂、贵金属催化剂和非贵金属催化剂等在电催化NRR领域中的应用, 以及提升NRR性能的主要策略和其它氮源(如: NO3 和NO)电催化合成氨的研究进展, 最后就该方向存在的一些问题以及急需突破的方向进行了总结与展望.  相似文献   

2.
氨是现代农业和工业不可缺少的化工原料,传统的Haber-Bosch合成氨生产工艺需要高温(~400℃)和高压(约10-15MPa)等苛刻条件,从而导致大量的CO2排放和全球年1%-2%的能源消耗.因此,开发低温/低压和环境友好的新型合成氨催化剂对于可持续发展是非常重要的.近年来,单原子催化剂(SAC)作为一类新型的环境友好的催化材料在能源有效利用和环境保护中发挥了重要作用.MXenes是一类新型过渡金属碳化物/氮化物/碳氮化物二维纳米材料,因其具有类金属的导电性、亲水性、良好的柔性、可调节的多原子类型和原子层厚度以及表面端基修饰等物理化学特性,是较好的负载单原子催化剂的载体.MXenes负载的金属单原子催化剂(SAC)因其具有高稳定性、独特的电子结构和最高的原子利用率而成为潜在的低成本、高效环保的合成氨电催化剂.本文基于密度泛函理论(DFT)计算,系统研究了Ti2CO2的Ti缺陷位点被3d过渡金属M (Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu和Zn)原子占据所形成的SAC(记为M1@Ti<...  相似文献   

3.
氨是一种重要的化肥生产原料和清洁能源载体,在工业上主要通过哈伯法合成,但该工艺反应条件苛刻,需要高温高压并消耗大量的化石能源。因此,开发能耗低、反应温和的合成氨方法,对于缓解能源和环境的双重压力具有重要的现实意义。近年来,在温和条件下通过电催化氮还原反应(NRR)合成氨有望替代哈伯法,但该技术的重点在于设计合理的电催化反应体系并开发高效的催化剂以提升缓慢的NRR动力学过程。为此,本文从电催化合成氨的反应机理出发,介绍了电催化氮还原体系的构建,综述了近年来电催化氮还原催化剂的发展现状,重点总结了提升NRR催化剂活性的设计策略,并对这一新兴领域面临的挑战和潜在的应用前景进行了合理的展望。  相似文献   

4.
工业合成氨催化剂发现较早,目前应用的Fe-Al_2O_3-K_2O体系有近70年的历史。由于哈伯法合成氨需要高温高压,对设备要求较高,且能量利用不经济,因此长期以来一直在寻找新的更有效的催化剂。在早期和近来寻找合成氨催化剂的过程中,发现锇、铀、钌具有较高的催化效率,但由于这些金属较贵,而且共存的氢在氢压较高时有阻害作用,故至今没有采用,根据铁、钌、锇、铀这些元素在周期表中的位置很自然地会想到介于这些元素之间的稀土金属是否也能催化合成氨。而且我国稀土资源丰富。因此,有一定的现实意义。  相似文献   

5.
氨是氮肥等工业的主要原料,因此氨产量居各种化工产品的首位.目前,90%以上的氨通过传统Haber-Bosch法制得,但该反应需要在高温高压下进行,消耗大量能源,同时排放大量CO2.基于此,科研人员致力于寻求一种绿色、高效的合成氨替代方法.其中,利用太阳能,通过光电化学氮还原合成氨是最有潜力和竞争力的方法之一,该方法也为有效利用太阳能提供了新途径.目前,虽然光电化学氮还原研究取得了一定进展,但是氨产率和氮转换效率低限制了其经济可行性.这主要归因于四个方面:(1)牢固的氮氮三键使得氮气难以活化;(2)复杂的多步和多电子反应使得动力学迟缓;(3)析氢竞争反应降低了太阳能-氨的转换效率;(4)氮气在水溶液中的溶解度低导致吸附在光电阴极表面的氮气较少.为解决上述问题,本文通过溅射法在B掺杂的p型(100)晶向硅片上共沉积Au,Co和Pd,然后在600℃下和空气中快速退火,制得由助催化剂/保护层/光吸收层组成的层级硅基光电阴极,并用于氮还原合成氨.成分和结构表征结果表明,层级硅基光电阴极由p型硅光吸收层、二氧化硅保护薄层和AuCoPd合金纳米颗粒助催化剂组成,该电极可表示为A...  相似文献   

6.
氨不仅是一种重要的化工原料,还是一种潜在的储氢能源载体.传统的Haber-Bosch合成氨工艺通常需要较高的温度和压力来解离强的N≡N键(945 kJ·mol~(-1)).因此,开发在温和条件下使用的高效合成氨催化剂引起了广泛关注.本文综述了负载型钌基催化剂、金属间化合物、金属氮化物和金属氢化物在温和条件下合成氨的研究进展,希望通过相应构效关系的关联,能给读者以启迪,更好地理解合成氨催化剂在氨合成过程中的作用,为新型合成氨催化剂的设计提供一定的理论指导.  相似文献   

7.
熔铁催化剂是工业上很重要的催化剂,它不仅在合成氨工业中已广泛采用,并且在近年来,在水煤气合成中应用熔铁催化剂的研究工作也已有了很大的发展.无论在合成氨或是合成油的过程中,催化剂的还原都被认为是关键性的步骤.这不仅因为还原是使金属氧化物还原成金属,因而产生活性,并且还原的条件也影响到催化剂的活性表面的性质,如结晶大小、  相似文献   

8.
现代合成氨能量消耗占合成氨总成本70%,因而开发低温、常压、高活性的新催化体系非常重要。七十年代以来,国内外已开发出 Fe—K/活性炭、Ba—Ru—K/活性炭、Fe—稀土合金、含稀土氧化物的铁催化剂、铁—钴催化剂及 Fe—Mn 催化剂等,使反应压力降低至~80大气压(1atm=1.01325×10~5Pa),反应温度为300—400℃,大大改进了合成氨催化剂的性能。  相似文献   

9.
讨论了氢在合成氨催化剂铁上的状态问题,用量子化学半经验的 SCCC-LCAO-MO 方法计算了 Fe-H 的电荷分布.计算结果氢上带有0. 199个电子电荷.讨论了催化加氢反应中H~(6-)的作用机制.把目前从氮加氢合成氨的反应分成两类,一类是低价金属的分子氮络合物水解产生氨或肼,氢源来自溶液.另一类以氢作为还原剂和氢源,包括熔铁催化剂和铁-碳-钾体系.提出了 H~(6-)在合成氨过程中的重要作用.  相似文献   

10.
德国物理化学家哈伯(Haber Fritz,1868—1934)与德国巴登苯胺纯碱公司(BASF)机械工程师波希(Carl Bosch)相互合作,于1910年5月在德国路德维希港(Ludwigshafen)的小型试验装置中,在催化剂存在下,用氢、氮气生产出4公斤液氨,从此开创了固定氮工业崭新的一页。七十余年间,合成氨工业无论在工艺技术和产品产量方面,都取得了迅猛的发展。1982/1983化肥年度,世界合成氨生产能力已达103.7百万吨氮(即125.8百万吨氨)。合成氨工业的兴起,  相似文献   

11.
助催化剂对Fe1-xO基氨合成催化剂还原性能的影响   总被引:2,自引:6,他引:2  
李小年 《催化学报》1998,19(1):24-28
当助催化剂存在是地,Fe1-xO基催化剂的还原性能明显优于Fe3O4基催化剂,其原因是铝、钾、钙的氧化物对催化剂母体相Fe1-xO和Fe3O4还原性能的影响不同。由于Al^3+大量地进入Fe3O4的晶格而强烈地阻止Fe3O4的还原,只有少量的Al^3+能进入Fe1-xO晶格,因此对Fe1-xO的还原影响很小;  相似文献   

12.
王维佳  李金林  罗明生 《催化学报》2007,28(10):925-930
用共沉淀法制备了一系列不同硅含量的铁基催化剂,采用N2吸附和原位X射线衍射对催化剂进行了表征,在固定床反应器中考察了催化剂的费-托合成反应活性、选择性和稳定性.结果表明,含硅的催化剂具有较大的比表面积和较小的平均孔径,在CO还原及费-托合成反应中生成的碳化铁物种的稳定性比不含硅的催化剂高.在费-托合成反应中,不含硅的催化剂具有较高的初始活性,但易失活;含硅的催化剂具有较低的初始活性,但稳定性较高.Fe7C3是活性最高的碳化铁物种.随着硅含量的增加,催化剂的费-托合成反应更易生成低碳数产物.  相似文献   

13.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   

14.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

15.
Reported herein are the synthesis, structural, magnetic and M?ssbauer spectroscopic characterisation of a dinuclear Fe(II) triple helicate complex [Fe(2)(L)(3)](ClO(4))(4).xH(2)O (x = 1-4), 1(H(2)O), where L is a bis-bidentate imidazolimine ligand. Low temperature structural analysis (150 K) and M?ssbauer spectroscopy (4.5 K) are consistent with one of the Fe(II) centres within the helicate being in the low spin (LS) state with the other being in the high-spin (HS) state resulting in a [LS:HS] species. However, M?ssbauer spectroscopy (295 K) and variable temperature magnetic susceptibility measurements (4.5-300 K) reveal that 1(H(2)O) undergoes a reversible single step spin crossover at one Fe(II) centre at higher temperatures resulting in a [HS:HS] species. Indeed, the T(1/2)(SCO) values at this Fe(II) centre also vary as the degree of hydration, x, within 1(H(2)O) changes from 1 to 4 and are centred between ca. 210 K-265 K, respectively. The dehydration/hydration cycle is reversible and the fully hydrated phase of 1(H(2)O) may be recovered on exposure to water vapour. This magnetic behaviour is in contrast to that observed in the related compound [Fe(2)(L)(3)](ClO(4))(4)·2MeCN, 1(MeCN), whereby fully reversible SCO was observed at each Fe(II) centre to give [LS:LS] species at low temperature and [HS:HS] species at higher temperatures. Reasons for this differing behaviour between 1(H(2)O) and 1(MeCN) are discussed.  相似文献   

16.
A per-O-methylated beta-cyclodextrin dimer, Py2CD, was conveniently prepared via two steps: the Williamson reaction of 3,5-bis(bromomethyl)pyridine and beta-cyclodextrin (beta-CD) yielding 2A,2'A-O-[3,5-pyridinediylbis(methylene)bis-beta-cyclodextrin (bisCD) followed by the O-methylation of all the hydroxy groups of the bisCD. Py2CD formed a very stable 1:1 complex (Fe(III)PCD) with [5,10,15,20-tetrakis(p-sulfonatophenyl)porphinato]iron(III) (Fe(III)TPPS) in aqueous solution. Fe(III)PCD was reduced with Na2S2O4 to afford the Fe (II)TPPS/Py2CD complex (Fe(II)PCD). Dioxygen was bound to Fe(II)PCD, the P(1/2)(O2) values being 42.4 +/- 1.6 and 176 +/- 3 Torr at 3 and 25 degrees C, respectively. The k(on)(O2) and k(off)(O2) values for the dioxygen binding were determined to be 1.3 x 10(7) M(-1) s(-1) and 3.8 x 10(3) s(-1), respectively, at 25 degrees C. Although the dioxygen adduct was not very stable (K(O2) = k(on)(O2)/k(off)(O2) = 3.4 x 10(3) M(-1)), no autoxidation of the dioxygen adduct of Fe(II)PCD to Fe(III)PCD was observed. These results suggest that the encapsulation of Fe (II)TPPS by Py2CD strictly inhibits not only the extrusion of dioxygen from the cyclodextrin cage but also the penetration of a water molecule into the cage. The carbon monoxide affinity of Fe(II)PCD was much higher than the dioxygen affinity; the P(1/2)(CO), k(on)(CO), k(off)(CO), and K(CO) values being (1.6 +/- 0.2) x 10(-2) Torr, 2.4 x 10(6) M(-1) s(-1), 4.8 x 10(-2) s(-1), and 5.0 x 10(7) M(-1), respectively, at 25 degrees C. Fe(II)PCD also bound nitric oxide. The rate of the dissociation of NO from (NO)Fe(II)PCD ((5.58 +/- 0.42) x 10(-5) s(-1)) was in good agreement with the maximum rate ((5.12 +/- 0.18) x 10(-5) s(-1)) of the oxidation of (NO)Fe(II)PCD to Fe(III)PCD and NO3(-), suggesting that the autoxidation of (NO)Fe(II)PCD proceeds through the ligand exchange between NO and O2 followed by the rapid reaction of (O2)Fe(II)PCD with released NO, affording Fe(II)PCD and the NO3(-) anion inside the cyclodextrin cage.  相似文献   

17.
SiO2骨架支撑MoOx催化剂用于正庚烷异构化反应   总被引:3,自引:0,他引:3  
 采用SEM,XRD,EDS及N2吸附-脱附方法研究了骨架型MoOx-SiO2催化剂和负载型MoOx/SiO2催化剂的物理化学结构,并在常压固定床流动反应器上考察了两种催化剂对正庚烷异构化反应的催化性能.结果表明,在MoOx-SiO2催化剂中,44.6%的SiO2即可起到很好的骨架支撑作用;MoOx晶相以足够大的空间区域聚集包裹在SiO2骨架中,形成类似MoOx催化剂的独特的中孔结构.与MoOx催化剂相比,MoOx-SiO2催化剂显著提高了机械强度,并维持了MoOx催化剂较高的活性和选择性.由于钼物种和载体之间的相互作用,负载型MoOx/SiO2催化剂表现出较低的比活性.脉冲注入H2S实验结果表明,MoOx-SiO2催化剂具有较好的抗硫性能.  相似文献   

18.
Fe2O3改性NaY沸石上吡咯烷亚硝胺的降解   总被引:8,自引:0,他引:8  
 采用程序升温表面反应(TPSR),NH3-TPD,TG-MS和脉冲催化反应等手段研究了吡咯烷亚硝胺(NPYR)在Fe2O3改性NaY沸石上的催化降解.结果表明,用微波辐射、浸渍或焙烧等不同方法制备的改性沸石对NPYR降解的催化性能各不相同,以浸渍法制备的样品活性最高,但该样品对降解产物NO2的吸附作用较弱.在NPYR的降解反应中,Fe2O3改性NaY沸石上的Fe向沸石外表面迁移和富集,覆盖了沸石表面的铝,使催化剂表现出Fe2O3的性质.  相似文献   

19.
已有熔铁氨合成催化剂中添加稀土的报道.我们通过添加稀土得到了几种活性较高的催化剂,经进一步改进制备工艺(水浸处理后),活性又有所提高.本文利用XRD和AES等,对经水浸前后的含稀土催化剂的结构进行了测试,探讨了水浸后活性提高的原因.  相似文献   

20.
The 16-Fe(III)-containing 48-tungsto-8-phosphate [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) (1) has been synthesised and characterised by IR and ESR spectroscopy, TGA, elemental analyses, electrochemistry and susceptibility measurements. Single-crystal X-ray analyses were carried out on Li(4)K(16)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)]66 H(2)O2 KCl (LiK-1, orthorhombic space group Pnnm, a=36.3777(9) A, b=13.9708(3) A, c=26.9140(7) A, and Z=2) and on the corresponding mixed sodium-potassium salt Na(9)K(11)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)].100 H(2)O (NaK-1, monoclinic space group C2/c, a=46.552(4) A, b=20.8239(18) A, c=27.826(2) A, beta=97.141(2) degrees and Z=4). Polyanion 1 contains--in the form of a cyclic arrangement--the unprecedented {Fe(16)(OH)(28)(H(2)O)(4)}(20+) nanocluster, with 16 edge- and corner-sharing FeO(6) octahedra, grafted on the inner surface of the crown-shaped [H(7)P(8)W(48)O(184)](33-) (P(8)W(48)) precursor. The synthesis of 1 was accomplished by reaction of different iron species containing Fe(II) (in presence of O(2)) or Fe(III) ions with the P(8)W(48) anion in aqueous, acidic medium (pH approximately 4), which can be regarded as an assembly process under confined geometries. One fascinating aspect is the possibility to model the uptake and release of iron in ferritin. The electrochemical study of 1, which is stable from pH 1 through 7, offers an interesting example of a highly iron-rich cluster. The reduction wave associated with the Fe(III) centres could not be split in distinct steps independent of the potential scan rate from 2 to 1000 mV s(-1); this is in full agreement with the structure showing that all 16 iron centres are equivalent. Polyanion 1 proved to be efficient for the electrocatalytic reduction of NO(x), including nitrate. Magnetic and variable frequency EPR measurements on 1 suggest that the Fe(III) ions are strongly antiferromagnetically coupled and that the ground state is tentatively spin S=2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号